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Kalman Filtering Application

Summary





1. Time Varying Channel Estimation



 
	        
 Figure 1. Multipath Communications Channel
 [image: Multipath Communications Channel (mcc.png)]



	    
	        This effect is the result of many
	  propagation paths, each of which delays and attenuates the
	  input signal.
      
 Additionally, the channel is time-varying due
	to movement of the source, receiver, and/or
	scattors. Therefore, the channel is acting like a linear time
	varying filter. Due to the time-varying nature of the channel,
	a sinusoidal input does not produce a pure sinusoid at the
	output Figure 2.

	
 Figure 2. 
 [image: Figure (timeVary.png)]




	Instead, the output is a narrowband process. Assuming the
	channel is relatively slowly varying (compared to the
	frequency of the input) we can view the input sinusoids as
	being amplitdue modulated by the time-varying channel. This
	effect is referred to as fading and such channels
	are called fading multipath channels. If we
	sample the output of the channel, then a very good model is
	the low-pass tapped delay line model:

	
	Where 
	
	           y(n)
	 is the output, 
	
	           h
            
               n
            (k)
	 is the impulse response depending on time
	
            n
         , and
	
	           v(n − k)
	 is the input. This is simply an FIR filter with
	time-varying coefficients. In practice we wouldn't observe
	this perfect output, but rather a noise-corrupted version of
	it:
	
	Where 
	
	           w(n)
	 is observation noise. The goal of channel estimation
	is to determine the linear time-varying filter
	
	           h
            
               n
            (k)
	 based on the input
	
	           v(n)
	 and measured output
	
	           x(n)
	. Is this possible?
      
 Assume
	
	           v(n) = 0
	 for
	
	           n < 0
	. Then
	
	           x(0) = h
            0(0)v(0) + h
            0(1)v(-1) + w(0) = h
            0(0)v(0) + w(0)
	

	        
	              x(1) = h
               1(0)v(1) + h
               1(1)v(0) + w(1)
	  
	
	        
	           x(2) = h
            2(0)v(2) + h
            2(1)v(1) + w(2)
	

	        
	           ⋮
	        
	
	For each
	
	           n ≥ 1
	 we have two new parameters we must estimate!
      
 Even in the absence of measurement noise we
	have more unknowns than equations and we can't determine the
	filter. What can we do?
      
 Well, suppose that the filter weights are not
	changing too rapidly from sample to sample. This is known as a
	slow-fading channel model. Probabilistically, we
	can view the slowly varying channel as a vector-valued
	Gauss-Markov process:

	
	Where
	, 
	 
            A 
          is a
	
            p
         x
            p
         
	matrix designed to reflect the correlation expected between
	filter weights at different time samples, and
	 is a white Gaussian noise vector process with covariance
	
	           Q
	        . That is, 
	 are iid vectors and
	. A standard simplifying assumption is to assume
	that
	
	           A 
	         and
	
	           Q 
          are diagonal which
	implies that the filter weights are uncorrelated with each
	other. This is called an uncorrelated scattering
	model.
      
 The measurement/observation model in vector
      form is
	

	Where
	. With this notation and our Gauss-Markov model for
	the time-varying filter, we can now devise a Kalman filter to
	estimate and track the channel.
      
 In the case we have the state equation:
	
	(with
	 in place of
	 now). Furthermore, assume that
	 with
	 also diagonal. The measurement equation:
	
	Note that
	 is known, but
	time-varying. In our earlier discussion
	the
	
	           C 
          vector of the
	observation model was constant. The
	Kalman filter still is applicable here, we just replace
	
	           C 
	         with
	.
      

2. Kalman Filter



 
	        
	Where 
	 is the best estimate of channel given measurements up
	to time 
            n
         .

	

	        

	        

	        

	        

	        
 Notice

	              Q
	            is the covariance of vector
	   process instead of
	  
	              σ
               
                  u
               
               2
               b
               b
               T
	            (which is a special case with
	  , where 
	  
	              u
               
                  n
               
	            is a scalar).

      

3. Slow-Fading Model Parameters



 Example 1. 
 
	  
	           
	              p = 2
	  
	           
	  which is the state transition matrix.
	  
	  which is the driving noise covariance. To reflect little or no
	  knowledge about the initial state of the channel
	  
	  
	  Channel model:
	  
	                 x(n) = h
                  
                     n
                  (0)v(n) + h
                  
                     n
                  (1)v(n − 1) + w(n)
	    
	  Where
	  
	              v(n)
	   is the input to the channel, a known square wave, 
	  
	              h
               
                  n
               (k)
	   is the time-varying channel model (linear
	  time-varying FIR filter), and
	  
	              w(n)
	   is white Gaussian observation noise.

	  
	  
 Figure 3. Noise-Free Channel Output y
 [image: Noise-Free Channel Output y (.png)]




	           
 Figure 4. Observation Channel Output x
 [image: Observation Channel Output x (.png)]




	           
 Figure 5. Channel h
 [image: Channel h (.png)]




	           
 Figure 6. Channel Filter Weight h(1)
 [image: Channel Filter Weight h(1) (.png)]




	           
 Figure 7. Channel Filter Weight h(2)
 [image: Channel Filter Weight h(2) (.png)]
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