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Abstract

Given a set of structures of the same molecule, it is often necessary to decide which are more similar
or less similar to each other. This module presents a few ways to approach that problem, including root
mean squared distance (RMSD), least RMSD, and intramolecular distance measures.

Topics in this Module

• Comparing Molecular Conformations (Section 1: Comparing Molecular Conformations)
• RMSD and lRMSD (Section 2: RMSD and lRMSD)
• Optimal Alignment for lRMSD Using Rotation Matrices (Section 3: Optimal Alignment for lRMSD

Using Rotation Matrices)
• Optimal Alignment for lRMSD Using Quaternions (Section 4: Optimal Alignment for lRMSD Using

Quaternions)

· Introduction to Quaternions (Section 4.1: Introduction to Quaternions)
· Quaternions and Three-Dimensional Rotations (Section 4.2: Quaternions and Three-Dimensional

Rotations)
· Optimal Alignment with Quaternions (Section 4.3: Optimal Alignment with Quaternions)

• Intramolecular Distance and Related Measures (Section 5: Intramolecular Distance and Related Mea-
sures)

1 Comparing Molecular Conformations

Molecules are not rigid. On the contrary, they are highly �exible objects, capable of changing shape dramat-
ically through the rotation of dihedral angles. We need a measure to express how much a molecule changes
going from one conformation to another, or alternatively, how di�erent two conformations are from each
other. Each distinct shape of a given molecule is called a conformation. Although one could conceivably
compute the volume of the intersection of the alpha shapes for two conformations (see Molecular Shapes
and Surfaces1 for an explanation of alpha shapes) to measure the shape change, this is prohibitively com-
putationally expensive. Simpler measures of distance between conformations have been de�ned, based on
variables such as the Cartesian coordinates for each atom, or the bond and torsion angles within the molecule.
When working with Cartesian coordinates, one can represent a molecular conformation as a vector whose
components are the Cartesian coordinates of the molecule's atoms. Therefore, a conformation for a molecule
with N atoms can be represented as a 3N-dimensional vector of real numbers.

∗Version 1.23: Jun 11, 2007 4:52 am -0500
†http://creativecommons.org/licenses/by/1.0
1"Molecular Shapes and Surfaces" <http://cnx.org/content/m11616/latest/>
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2 RMSD and lRMSD

One of the most widely accepted di�erence measures for conformations of a molecule is least root mean
square deviation (lRMSD). To calculate the RMSD of a pair of structures (say x and y), each structure
must be represented as a 3N-length (assuming N atoms) vector of coordinates. The RMSD is the square
root of the average of the squared distances between corresponding atoms of x and y. It is a measure of the
average atomic displacement between the two conformations:

However, when molecular conformations are sampled from molecular dynamics or other forms of sampling,
it is often the case that the molecule drifts away from the origin and rotates in an arbitrary way. The lRMSD
distance aims at compensating for these facts by representing the minimum RMSD over all possible relative
positions and orientations of the two conformations under consideration. Calculating the lRMSD consists
of �rst �nding an optimal alignment of the two structures, and then calculating their RMSD. Note that
aligning two conformations may require both a translation and rotation. In other words, before computing
the RMSD distance, it is necessary to remove the translation of the centroid of both conformations and to
perform an "optimal alignment" or "optimal rotation" of them, since these two factors arti�cially increase
the RMSD distance between them.

Finding the optimal rotation to minimize the RMSD between two point sets is a well-studied problem,
and several algorithms exist. The Kabsch Algorithm[1][4][2][5], which is implemented in several molecular
modeling packages, solves a matrix equation for the three dimensional rotation matrix corresponding to the
optimal rotation. An alternative approach, discussed in detail after the matrix method, uses a compact
representation of rotational transformations called quaternions[3][3][4][1]. Quaternions are currently the
preferred representation for global rotation in calculating lRMSD, since they require less numbers to be
stored and are easy to re-normalize. In contrast, re-normalization of orthonormal matrices is quite expen-
sive and potentially numerically unstable. Both quaternions and their application to global alignment of
conformations will be presented after the next section.

3 Optimal Alignment for lRMSD Using Rotation Matrices

This section presents a method for computing the optimal rotation between 2 datasets as an orthonormal
rotation matrix. As stated earlier, this approach is slightly more numerically unstable (since guaranteeing
the orthonormality of a matrix is harder than the unit length of a quaternion) and requires taking care of
the special case when the resulting matrix may not be a proper rotation, as discussed below.

As stated earlier, the optimal alignment requires both a translation and a rotation. The translational part
of the alignment is easy to calculate. It can be proven that the optimal alignment is obtained by translating
one set so that its centroid coincides with the other set's centroid (see section 2-C of [3][?] for proof). The
centroid of a point set a is simply the average position of all its points:

http://cnx.org/content/m11608/1.23/
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Centroid of a Point Set

Figure 1: The centroid of a point set is the average position over all the points.

We can then rede�ne each point in two sets A and B as a deviation from the centroid:

Rede�ning Point Sets in Terms of Centroids

Figure 2: Each point is now expressed as a deviation from its set's centroid.

Given this notation relative to the centroid, we can explicitly set the centroids to be equal and proceed
with the rotational part of the alignment.

One of the �rst references to the solution of this problem in matrix form is from Kabsch [1][4][2][5]. The
Kabsch method uses Lagrange multipliers2 to solve a minimization problem to �nd the optimal rotation.
Here, we present a slightly more intuitive method based on matrix algebra and properties, that achieves the
same result. This formulation can be found in [4][1] and [5][2]. Imagine we wish to align two conformations
composed of N atoms each, whose Cartesian coordinates are given by the vectors x and y. The main idea
behind this approach is to �nd a 3x3 orthonormal matrix U such that the application of U to the atom
positions of one of the data vectors, x, aligns it as best as possible with the other data vector, y, in the sense
that the quantity to minimize is the distance d (Ux, y), where x and y are assumed to be centered, that is,
both their centroids coincide at the origin (centering both conformations is the �rst step). Mathematically,
this problem can be stated as the minimization of the following quantity:

When E is a minimum, the square root of its value becomes the least RMSD (lRMSD) between x and
y. Being an orthonormal rotation matrix, U needs to satisfy the orthonormality property UUT = I , where
I is the identity matrix. The orthonormality contraint ensures that the rows and columns are mutually
orthogonal, and that their length (as vectors) is one. Any orthonormal matrix represents a rigid orientation
(transformation) in space. The only problem with this approach as is, is that all orthonormal matrices

2http://en.wikipedia.org/wiki/Lagrange_multipliers
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encode a rigid transformation, but if the rows/columns of the matrix do not constitute a right handed
system, then the rotation is said to be improper. In an improper rotation, one of the three directions may
be "mirrored". Fortunately, this case can be detected easily by computing the determinant of the matrix U ,
and if it is negative, correcting the matrix. Denoting Ux as x', and moving the constant factor N to the left,
the formula for the error becomes:

An alternative way to represent the two point sets, rather than a one-dimensional vector or as separate
atom coordinates, is using two 3xN matrices (N atoms, 3 coordinates for each). Using this scheme, x is
represented by the matrix X and y is represented by the matrix Y . Note that column 1 ≤ i ≤ N in these
matrices stands for point (atom) xi and yi, respectively. Using this new representation, we can write:

where X' = UX and Tr (A) stands for the trace3 of matrix A, the sum of its diagonal elements. It is
easy to see that that the trace of the matrix to the right amounts precisely to the sum on the left (simply
carrying out the multiplication of the �rst row/column should convince the reader). The right-hand side of
the equation can be expanded into:

Which follows from the properties of the trace operator, namely: Tr (A + B) = Tr (A) + Tr (B) , Tr (AB) = Tr (BA),
Tr (AT = Tr (A), and Tr (kA) = kTr (A). Furthermore, the �rst two terms in the expansion above represent
the sum of the squares of the components xi and yi, so it can be rewritten as:

Note that the x components do not need to be primed (i.e., x') since the rotation U around the origin
does not change the length of xi. Note that the summation above does not depend on U , so minimizing E
is equivalent tomaximizingTr (Y T X'. For this reason, the rest of the discussion focuses on �nding a proper
rotation matrix U that maximizes Tr (Y T X'. Remembering that X' = UX, the quantity to maximize is then
Tr (

(
Y T U

)
X. From the property of the trace operator, this is equivalent to Tr (

(
XY T

)
U . Since XY T is a

3http://en.wikipedia.org/wiki/Trace_%28linear_algebra%29
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square 3x3 matrix, it can be decomposed through the Singular Value Decomposition4 technique (SVD) into
XY T = VSWT , where V and WT are the matrices of left and right eigenvectors (which are orthonormal
matrices), respectively, and S is a diagonal 3x3 matrix containing the eigenvalues s1, s2, s3 in decreasing
order. Again from the properties of the trace operator, we obtain that:

If we introduce the 3x3 matrix T as the product T = WT UV , we can rewrite the above expression as:

Since T is the product of orthonormal matrices, it is itself an orthonormal matrix and det (T) = +/− 1.
This means that the absolute value of each element of this matrix is no more than one, from where the last
equality follows. It is obvious that the maximum value of the left hand side of the equation is reached when
the diagonal elements of T are equal to 1, and since it is an orthonormal matrix, all other elements must
be zero. This results in T = I. Moreover, since T = WT UV , we can write that WT UV = I, and because
W and V are orthonormal, WWT = I and V V T = I. Multiplying WT UV by W to the left and V T to the
right yields a solution for U :

Where V and WT are the matrices of left and right eigenvectors, respectively, of the covariance matrix
C = XY T . This formula ensures that U is orthonormal (the reader should carry out the high-level matrix
multiplication and verify this fact).

The only remaining detail to take care of is to make sure that U is a proper rotation, as discussed before.
It could indeed happen that det (U) = −1 if its rows/columns do not make up a right-handed system. When
this happens, we need to compromise between two goals: maximizing Tr (Y T X' and respecting the constraint
that det (U) = +1. Therefore, we need to settle for the second largest value of Tr (Y T X'. It is easy to see
what the second largest value is; since:

4http://en.wikipedia.org/wiki/Singular_value_decomposition
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then the second largest value occurs when T11 = T22 = +1 and T33 = −1. Now, we have that T cannot
be the identity matrix as before, but instead it has the lower-right corner set to -1. Now we �nally have
a uni�ed way to represent the solution. If det (C) > 0, T is the identity; otherwise, it has a -1 as its last
element. Finally, these facts can be expressed in a single formula for the optimal rotation U by stating:

where d = sign (det (C)). In the light of the preceding derivation, all the facts that have been presented
as a proof can be succinctly put as an algorithm for computing the optimal rotation to align two data sets
x and y:

Optimal rotation

1. Build the 3xN matrices X and Y containing, for the sets x and y respectively, the coordinates for each
of the N atoms after centering the atoms by subtracting the centroids.

2. Compute the covariance matrix C = XY T

3. Compute the SVD (Singular Value Decomposition) of C = V SWT

4. Compute d = sign (det (C))
5. Compute the optimal rotation U as

4 Optimal Alignment for lRMSD Using Quaternions

Another way of solving the optimal rotation for the purposes of computing the lRMSD between two con-
formations is to use quaternions. These provide a very compact way of representing rotations (only 4
numbers as compared to 9 or 16 for a rotation matrix) and are extremely easy to normalize after performing
operations on them. Next, a general introduction to quaternions is given, and then they will be used to
compute the optimal rotation between two point sets.

4.1 Introduction to Quaternions

Quaternions are an extension of complex numbers. Recall that complex numbers are numbers of the form a
+ bi, where a and b are real numbers and i is the canonical imaginary number, equal to the square root of -1.
Quaternions add two more imaginary numbers, j and k. These numbers are related by the set of equalities
in the following �gure:

http://cnx.org/content/m11608/1.23/
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Equation Relating the Imaginary Elements i, j and k

Figure 3: Properties of quaternion arithmetic follow directly from these equalities.

These equalities give rise to some unusual properties, especially with respect to multiplication.

Multiplication Table for the Imaginary Elements i, j and k

Figure 4: Note that multiplication of i, j, and k is anti-commutative.

Given this de�nition of i, j, and k, we can now de�ne a quaternion.

De�nition of a Quaternion

Figure 5: A quaternion is a number of the above form, where a, b, c, and d are real-valued scalars and
i, j, and k are imaginary numbers as de�ned above.

Based on the de�nitions of i, j and k, we can also derive rules for addition and multiplication of quater-
nions. Assume we have two quaternions, p and q, de�ned as follows:

http://cnx.org/content/m11608/1.23/
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Quaternions p and q

Figure 6: De�nition of quaternions p and q for later use.

Addition of p and q is fairly intuitive:

Addition of Quaternions p and q

Figure 7: Quaternion addition closely resembles vector addition. Corresponding coe�cients are added
to yield the sum quaternion. This operation is associative and commutative.

The dot product and magnitude of a quaternion also closely resemble those operations for vectors. Note
that a unit quaternion is a quaternion with magnitude 1 under this de�nition:

Dot (Inner) Product of p and q

Figure 8: The dot product of quaternions is analogous to the dot product of vectors.

Magnitude of Quaternion p

Figure 9: As with vectors, the square of the magnitude of p is the dot product of p with itself.

Multiplication, however, is not, due to the de�nitions of i, j, and k:

http://cnx.org/content/m11608/1.23/



OpenStax-CNX module: m11608 9

Multiplication of Quaternions p and q

Figure 10: This result can be con�rmed by carrying out long multiplication of p and q. There is no
analog in vector arithmetic for quaternion multiplication.

Quaternion multiplication also has two equivalent matrix forms which will become relevant later in the
derivation of the alignment method:

Multiplication of Quaternions p and q, Matrix Forms

Figure 11: Note that quaternions can be represented as column vectors with the imaginary components
omitted. This allows vector notation to be used for many quaternion operations, including multiplication.
The quaternion a + bi + cj + dk, for example, may be represented by a column vector of the form [a, b,
c, d].

These useful properties of quaternion multiplication can be derived easily using the matrix form for
multiplication, or they can be proved by carrying out the products:

http://cnx.org/content/m11608/1.23/
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Some properties of Quaternion Multiplication

Figure 12: Some useful properties. q* is the quaternion conjugate, a-bi-cj-dk

4.2 Quaternions and Three-Dimensional Rotations

A number of di�erent methods exist for denoting rotations of rigid objects in three-dimensional space. These
are introduced in a module on protein kinematics. Unit quaternions represent a rotation of an angle around
an arbitrary axis. A rotation by the angle theta about an axis represented by the unit vector v = [x, y, z] is
represented by a unit quaternion:

Unit Quaternion and Rotation

Figure 13: This unit quaternion represents a rotation of theta about the axis de�ned by unit vector v
= [x, y, z].

Like rotation matrices, quaternions may be composed with each other via multiplication. The major
advantage of the quaternion representation is that it is more robust to numerical instability than or-
thonormal matrices. Numerical instability results from the fact that, because computers use a �nite number
of bits to represent real numbers, most real numbers are actually represented by the nearest number the
computer is capable of representing. Over a series of �oating point operations, the error caused by this
inexact representation accumulates, quite rapidly in the case of repeated multiplications and divisions. In
manipulating orthonormal transformation matrices, this can result in matrices that are no longer orthonor-
mal, and therefore not valid rigid transformations. Finding the "nearest" orthonormal matrix to an arbitrary
matrix is not a well-de�ned problem. Unit-length quaternions can accumulate the same kind of a numer-
ical error as rotation matrices, but in the case of quaternions, �nding the nearest unit-length quaternion
to an arbitrary quaternion is well de�ned. Additionally, because quaternions correspond more directly to
the axis-angle representation of three-dimensional rotations, it could be argued that they have a more in-
tuitive interpretation than rotation matrices. Quaternions, with four parameters, are also more memory
e�cient than 3x3 matrices. For all of these reasons, quaternions are currently the preferred representation
for three-dimensional rotations in most modeling applications.

Vectors can be represented as purely imaginary quaternions, that is, quaternions whose scalar component
is 0. The quaternion corresponding to the vector v = [x, y, z] is q = xi + yj + zk.

We can perform rotation of a vector in quaternion notation as follows:

http://cnx.org/content/m11608/1.23/
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Rotation Using Unit Quaternions

Figure 14: In this �gure, r is the vector [x, y, z] in quaternion form, q is a unit (rotation) quaternion,
q* is the conjugate of q, and r' is r after the rotation has been performed.

4.3 Optimal Alignment with Quaternions

The method presented here is from Berthold K. P. Holm, "Closed-form solution of absolute orientation using
unit quaternions." Journal of the Optical Society of America A, 4:629-642.

The alignment problem may be stated as follows:

• We have two sets of points (atoms) A and B for which we wish to �nd an optimal alignment, de�ned as
the alignment for which the root mean square di�erence between each point in A and its corresponding
point in B is minimized.

• We know which point in A corresponds to which point in B. This is necessary for any RMSD-based
method.

As for the case of rotation matrices, the translational part of the alignment consists of making the
centroids of the two data sets coincide. To �nd the optimal rotation using quaternions, recall that the dot
product of two vectors is maximized when the vectors are in the same direction. The same is true when
the vectors are represented as quaternions. Using this property, we can de�ne a quantity that we want to
maximize (proof here5 ):

The Objective Function for Rotational Alignment (Quaternion Form)

Figure 15: We want to �nd the rotation on set A that maximizes the sum of the dot products of the
rotated vectors of A with the vectors of B, all expressed as o�sets from the set centroids.

5http://cnx.org/content/m11608/latest/quaternion-proof1.png
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Equivalently, using the last property from the section "Introduction to quaternions", we get:

Figure 16: The objective restated.

Now, recall that quaternion multiplication can be represented by matrices, and that the quaterions a and
b have a 0 real component:

Figure 17: These substitutions will be used to restate the function to be maximized.

Using these matrices, we can derive a new form for the objective function:

http://cnx.org/content/m11608/1.23/
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Figure 18: The third step follows because each term in the sum is multiplied on the left and right by
q, so the q factors can be moved outside the sum. The fourth step simply renames the sum of matrix
products to a single matrix, N, based on which we can �nd q.

where:

Figure 19: Now the problem is stated in terms of a matrix product optimization.

The quaternion that maximizes this product is the eigenvector of N that corresponds to its most positive
eigenvalue (proof here6 ). The eigenvalues can be found by solving the following equation, which is quartic
in lambda:

6http://cnx.org/content/m11608/latest/quaternion-proof2.png
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Figure 20: I is the 4x4 identity matrix.

This quartic equation can be solved by a number of standard approaches. Finally, given the maximum
eigenvalue lambda-max, the quaternion corresponding to the optimal rotation is the eigenvector v:

Figure 21: This equation can be solved to �nd the optimal rotation.

A closed-form solution to this equation for v can be found by applying techniques from linear algebra.
One possible algorithm, based on constructing a matrix of cofactors, is presented in appendix A5 of the
source paper [3][?].

In summary, the alignment algorithm works as follows:

• Recalculate atom coordinates as displacements from the centroid of each molecule. The optimal trans-
lation superimposes the centroids.

• Construct the matrix N based on matrices A and B for each atom.
• Find the maximum eigenvalue by solving the quartic eigenvalue equation.
• Find the eigenvector corresponding to this eigenvalue. This vector is the quaternion corresponding to

the optimal rotation.

This method appears computationally intensive, but has the major advantage over other approaches of
being a closed-form, unique solution.

5 Intramolecular Distance and Related Measures

RMSD and lRMSD are not ideally suited for all applications. For example, consider the case of a given
conformation A, and a set S of other conformations generated by some means. The goal is to estimate
which conformations in S are closest in potential energy to A, making the assumption that they will be the
conformations most structurally similar to A. The lRMSD measure will �nd the conformations in which the
overall average atomic displacement is least. The problem is that if the quantity of interest is the potential
energy of conformations, not all atoms can be treated equally. Those on the outside of the protein can often
move a fair amount without dramatically a�ecting the energy. In contrast, the core of the molecule tends
to be more compact, and therefore a slight change in the relative positions of a pair of atoms could lead to
overlap of the atoms, and therefore a completely infeasible structure and high potential energy. A class of
distance measures and pseudo-measures based on intramolecular distances have been developed to address
this shortcoming of RMSD-based measures.

Assume we wish to compare two conformations P and Q of a molecule with N atoms. Let pij be the
distance between atom i and atom j in conformation P, and let qij be the same distance for conformation Q.
Then the intramolecular distance is de�ned as

http://cnx.org/content/m11608/1.23/
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Figure 22: Intra-molecular distance (dRMSD)

One of the main computational advantages of this class of approaches is that we do not have to compute
the alignment between P and Q. On the other hand, for this metric we need to sum over a quadratic number
of terms, whereas for RMSD the number of terms is linear in the number of atoms. Approximations can
be made to speed up this computation, as shown in [7][6]. Also, the intramolecular distance measure given
above, which is sometimes referred to as the dRMSD, is subject to the problem that pairs of atoms most
distant from each other are the ones that contribute the greatest amount to their measured di�erence.

An interesting open problem is to come up with physically meaningful molecular distance metric that
allows for fast nearest neighbor computations. This can be useful for, for example, clustering conformations.
One proposed method is the contact distance. Contact distance requires constructing a contact map
matrix for each conformation indicating which pairs of atoms are less than some threshold separation. The
distance measure is then a measure of the di�erence of the contact maps.

Contact Distance

Figure 23: Contact maps (C) are calculated for each structure, and the di�erences in these contact
maps used to de�ne a distance D.

Other distance measures attempt to weight each pair in the dRMSD based on how close the atoms are,
with closer pairs given more weight, in keeping with the intuition that small changes in the relative positions
of nearby atoms are more likely to result in collisions. One such measure is the normalized Holm and
Sander Score.

http://cnx.org/content/m11608/1.23/



OpenStax-CNX module: m11608 16

Holm and Sander Distance

Figure 24: This distance function is weighted to accentuate the importance of di�erences in structures
that are relatively close to each other. These are the contacts most likely to a�ect the potential energy
of the structure.

This score is technically a pseudo-measure rather than a measure because it does not necessarily obey
the triangle inequality.

The de�nition of distance measures remains an open problem. For reference on ongoing work, see articles
that compare several methods, such as [5][?].
Recommended Reading:
The �rst two papers are the original descriptions of the Kabsch Algorithm, and use rotations represented
as orthonormal matrices to �nd the correct rotational transformation. Many software packages use this
alignment method. The third and fourth papers use quaternions. The alignment method presented in the
previous section comes from the third paper:

• W. Kabsch. (1976). A Solution for the Best Rotation to Relate Two Sets of Vectors7 . Acta Crystal-
lographica, 32, 922-923.

• W. Kabsch. (1978). A Discussion of the Solution for the Best Rotation to Relate Two Sets of Vectors8

. Acta Crystallographica, 34, 827-828.
• Berthold K. P. Horn. (1986). Closed-form solution of absolute orientation using unit quaternions.9

Journal of the Optical Society of America, 4:629-642.
• E. A. Coutsias and C. Seok and K. A. Dill. (2004). Using quaternions to calculate RMSD.10 Journal

of Computational Chemistry, 25, 1849-1857.
• Wallin, S., J. Farwer and U. Bastolla. (2003). Testing similarity measures with continuous and discrete

protein models 11 . Proteins, 50:144-157.
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