Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » ECE 301 Projects Fall 2003 » The Problems with Distortion

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice University ELEC 301 Projects

    This collection is included inLens: Rice University ELEC 301 Project Lens
    By: Rice University ELEC 301

    Click the "Rice University ELEC 301 Projects" link to see all content affiliated with them.

  • Rice Digital Scholarship

    This collection is included in aLens by: Digital Scholarship at Rice University

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

Also in these lenses

  • Lens for Engineering

    This module and collection are included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

  • EW Public Lens display tagshide tags

    This collection is included inLens: Ed Woodward's Public Lens
    By: Ed Woodward

    Comments:

    "assafdf"

    Click the "EW Public Lens" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

The Problems with Distortion

Module by: Elizabeth Gregory, Jason Buck. E-mail the authors

Summary: In trying to model distortion, a few noise problems and seemingly failed method arise.

Let's say you go out to Radio Shack and buy a few cheap cables that let you plug in your slammin' new guitar into your soundcard, just so you can play around with different distortions. You want try playing with MATLAB, using the Taylor Series method's familiar discrete power series:

y= n =0N a n xn y n 0 N a n x n
(1)
where xx is your original signal, yy is your distorted signal, and a n a n is the constant for each item of the sum.

The first problem you notice in playing back your wav file is the noise; after all, those were some really cheap cables! However, from an introductory electrical engineering class and another signals class, you've learned how to filter out noise, so that should be easy to deal with later.

You notice the next problem when trying to execute the Taylor Series approximation of the signals. You may set some harmonics' constants to zero, but as you increase different coefficients of higher and higher powers, the only difference is that the music has a lower volume, and the volume of the noise is higher! Why isn't this working?

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks