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Convergence of the mean (first-order analysis) is insufficient to guarantee desirable behavior of the LMS
algorithm; the variance could still be infinite. It is important to show that the variance of the filter coefficients
is finite, and to determine how close the average squared error is to the minimum possible error using an
exact Wiener filter.
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The minimum error is obtained using the Wiener filter
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To analyze the average error in LMS, write (1) in terms of V' = Q [W — W], where Q7'AQ = R
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So we need to know E {v;»kﬂ , which are the diagonal elements of the covariance matrix of V%, or E {V’kV’kT} .
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From the LMS update equation
WHFH = Wk 4 26, X*

we get
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Note that the Patently False independence Assumption was invoked here.

To analyze E [eszX kX kTQT}, we make yet another obviously false assumptioon that €,? and X* are
statistically independent. This is obviously false, since €, = di — Wkt x*k, Otherwise, we get 4th-order
terms in X in the product. These can be dealt with, at the expense of a more complicated analysis, if a
particular type of distribution (such as Gaussian) is assumed. See, for example Gardner[1]. A questionable
justification for this assumption is that as W* ~ Wopt, Wk becomes uncorrelated with X* (if we invoke

the original independence assumption), which tends to randomize the error signal relative to X*. With this
assumption,
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Thus, (4) becomes
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Now if this system is stable and converges, it converges to #°° = ¥ >°+1
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So it is a diagonal matrix with all elements on the diagonal equal:
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Then
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Thus the error in the LMS adaptive filter after convergence is
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1 — uNo,? is called the misadjustment factor. Oftern, one chooses y to select a desired misadjustment

factor, such as an error 10% higher than the Wiener filter error.

1 2nd-Order Convergence (Stability)

To determine the range for u for which (7) converges, we must determine the p for which the matrix difference

equation converges.
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The off-diagonal elements each evolve 1ndependent1y according to ¥Ft! =1 — 4/1)\1»7@-’“ These terms will

ij
decay to zero if Vi : (4uX; < 2), or u < 2)\xa
The diagonal terms evolve according to
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For the homoegeneous equation
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J
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for 1 — 4pu\; positive,
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or
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This is a more rigorous bound than the first-order bounds. Ofter engineers choose u a few times smaller
than this, since more rigorous analyses yield a slightly smaller bound. p = 53/ is derived in some analyses

assuming Gaussian xy, d.
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