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Convergence of the mean (�rst-order analysis) is insu�cient to guarantee desirable behavior of the LMS
algorithm; the variance could still be in�nite. It is important to show that the variance of the �lter coe�cients
is �nite, and to determine how close the average squared error is to the minimum possible error using an
exact Wiener �lter.
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The minimum error is obtained using the Wiener �lter
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To analyze the average error in LMS, write (1) in terms of V ' = Q [W −Wopt], where Q−1ΛQ = R
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From the LMS update equation
W k+1 = W k + 2µεkXk

we get
V 'k+1 = W 'k + 2µεkQXk

V k+1 = E
[
V 'k+1V 'k+1T

]
= E

[
4µ2εk

2QXkXkTQT
]

= V k + 2µ
(
εkQX

kV 'kT
)

+ 2µ
(
εkV

'kXkTQT
)

+ 4µ2E
[
εk

2QXkXkTQT
] (4)

Note that
εk = dk −W kTXk = dk −Wopt

T − V 'kTQXk

so

E
[
εkQX

kV 'kT
]

= E
[
dkQX

kV 'kT −Wopt
TXkQXkV 'kT − V 'kTQXkV 'kT

]
= 0 + 0−

(
QXkXkTQTV 'kV 'kT

)
= −

(
QE

[
XkXkT

]
QTE

[
V 'kV 'kT

])
= −

(
ΛV k

)
(5)

Note that the Patently False independence Assumption was invoked here.

To analyze E
[
εk

2QXkXkTQT
]
, we make yet another obviously false assumptioon that εk

2 and Xk are

statistically independent. This is obviously false, since εk = dk − W kTXk. Otherwise, we get 4th-order
terms in X in the product. These can be dealt with, at the expense of a more complicated analysis, if a
particular type of distribution (such as Gaussian) is assumed. See, for example Gardner[1]. A questionable
justi�cation for this assumption is that as W k ' Wopt, W

k becomes uncorrelated with Xk (if we invoke
the original independence assumption), which tends to randomize the error signal relative to Xk. With this
assumption,
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Thus, (4) becomes
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∑
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Now if this system is stable and converges, it converges to V ∞ = V ∞+1
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So it is a diagonal matrix with all elements on the diagonal equal:
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Then
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Thus the error in the LMS adaptive �lter after convergence is
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1− µNσx2 is called the misadjustment factor. Oftern, one chooses µ to select a desired misadjustment
factor, such as an error 10% higher than the Wiener �lter error.

1 2nd-Order Convergence (Stability)

To determine the range for µ for which (7) converges, we must determine the µ for which the matrix di�erence
equation converges.
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The o�-diagonal elements each evolve independently according to V k+1
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or
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This is a more rigorous bound than the �rst-order bounds. Ofter engineers choose µ a few times smaller
than this, since more rigorous analyses yield a slightly smaller bound. µ = µ

3Nσx
2 is derived in some analyses

assuming Gaussian xk, dk.
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