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Abstract

Proper coe�cient quantization is essential for IIR �lters. Sensitivity analysis shows that second-order

cascade-form implementations have much lower sensitivity than higher-order direct-form or transpose-

form structures. The normal form is even less sensitive, but requires more computation.

Coe�cient quantization is an important concern with IIR �lters, since straigthforward quantization often
yields poor results, and because quantization can produce unstable �lters.

1 Sensitivity analysis

The performance and stability of an IIR �lter depends on the pole locations, so it is important to know how
quantization of the �lter coe�cients ak a�ects the pole locations pj . The denominator polynomial is

D (z) = 1 +
N∑
k=1

akz
−k =

N∏
i=1

1− piz−1

We wish to know ∂pi

∂ak
, which, for small deviations, will tell us that a δ change in ak yields an ε = δ ∂pi

∂ak

change in the pole location. ∂pi

∂ak
is the sensitivity of the pole location to quantization of ak. We can �nd

∂pi

∂ak
using the chain rule.
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which is
∂pi

∂ak
= z−k

−(z−1
QN
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N−kQN
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Note that as the poles get closer together, the sensitivity increases greatly. So as the �lter order increases and
more poles get stu�ed closer together inside the unit circle, the error introduced by coe�cient quantization
in the pole locations grows rapidly.

How can we reduce this high sensitivity to IIR �lter coe�cient quantization?

1.1 Solution

Cascade1 or parallel form2 implementations! The numerator and denominator polynomials can be factored
o�-line at very high precision and grouped into second-order sections, which are then quantized section by
section. The sensitivity of the quantization is thus that of second-order, rather than N -th order, polynomials.
This yields major improvements in the frequency response of the overall �lter, and is almost always done in
practice.

Note that the numerator polynomial faces the same sensitivity issues; the cascade form also improves
the sensitivity of the zeros, because they are also factored into second-order terms. However, in the parallel
form, the zeros are globally distributed across the sections, so they su�er from quantization of all the blocks.
Thus the cascade form preserves zero locations much better than the parallel form, which typically means
that the stopband behavior is better in the cascade form, so it is most often used in practice.

note: On the basis of the preceding analysis, it would seem important to use cascade structures
in FIR �lter implementations. However, most FIR �lters are linear-phase and thus symmetric or
anti-symmetric. As long as the quantization is implemented such that the �lter coe�cients retain
symmetry, the �lter retains linear phase. Furthermore, since all zeros o� the unit circle must
appear in groups of four for symmetric linear-phase �lters, zero pairs can leave the unit circle only
by joining with another pair. This requires relatively severe quantizations (enough to completely
remove or change the sign of a ripple in the amplitude response). This "reluctance" of pole pairs
to leave the unit circle tends to keep quantization from damaging the frequency response as much
as might be expected, enough so that cascade structures are rarely used for FIR �lters.

Exercise 1 (Solution on p. 6.)

What is the worst-case pole pair in an IIR digital �lter?

2 Quantized Pole Locations

In a direct-form3 or transpose-form4 implementation of a second-order section, the �lter coe�cients are
quantized versions of the polynomial coe�cients.

D (z) = z2 + a1z + a2 = (z − p) (z − p)

p =
−a1 ±

√
a1

2 − 4a2

2

p = reiθ

D (z) = z2 − 2rcos (θ) + r2

1"IIR Filter Structures": Section IIR Cascade Form <http://cnx.org/content/m11919/latest/#section6>
2"IIR Filter Structures": Section Parallel form <http://cnx.org/content/m11919/latest/#section20>
3"IIR Filter Structures": Section Direct-form I IIR Filter Structure <http://cnx.org/content/m11919/latest/#section1>
4"IIR Filter Structures": Section Transpose-Form IIR Filter Structure

<http://cnx.org/content/m11919/latest/#section4>
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So
a1 = − (2rcos (θ))

a2 = r2

Thus the quantization of a1 and a2 to B bits restricts the radius r to r =
√
k∆B , and a1 = − (2< (p)) = k∆B

The following �gure shows all stable pole locations after four-bit two's-complement quantization.

Figure 1

Note the nonuniform distribution of possible pole locations. This might be good for poles near r = 1,
θ = π

2 , but not so good for poles near the origin or the Nyquist frequency.
In the "normal-form" structures, a state-variable5 based realization, the poles are uniformly spaced.

5"State-Variable Representation of Discrete-Time Systems", De�nition 1: "State"
<http://cnx.org/content/m11920/latest/#state>

http://cnx.org/content/m11926/1.2/
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Figure 2

This can only be accomplished if the coe�cients to be quantized equal the real and imaginary parts of
the pole location; that is,

α1 = rcos (θ) = < (r)

α2 = rsin (θ) = = (p)

This is the case for a 2nd-order system with the state matrix6A =

 α1 α2

−α1 α1

: The denominator

polynomial is

det (zI −A) = (z − α1)2 + α2
2

= z2 − 2α1z + α1
2 + α2

2

= z2 − 2rcos (θ) z + r2
(
cos2 (θ) + sin2 (θ)

)
= z2 − 2rcos (θ) z + r2

(2)

6"State-Variable Representation of Discrete-Time Systems": Section State and the State-Variable Representation
<http://cnx.org/content/m11920/latest/#section1>
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Given any second-order �lter coe�cient set, we can write it as a state-space system7, �nd a transformation

matrix8T such that
^
A= T−1AT is in normal form, and then implement the second-order section using a

structure corresponding to the state equations.
The normal form has a number of other advantages; both eigenvalues are equal, so it minimizes the norm

of Ax, which makes over�ow less likely, and it minimizes the output variance due to quantization of the state
values. It is sometimes used when minimization of �nite-precision e�ects is critical.

Exercise 2 (Solution on p. 6.)

What is the disadvantage of the normal form?

7"State-Variable Representation of Discrete-Time Systems": Section State and the State-Variable Representation
<http://cnx.org/content/m11920/latest/#section1>

8"State-Variable Representation of Discrete-Time Systems": Section State-Variable Transformation
<http://cnx.org/content/m11920/latest/#statetrans>

http://cnx.org/content/m11926/1.2/
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Solutions to Exercises in this Module

Solution to Exercise (p. 2)
The pole pair closest to the real axis in the z-plane, since the complex-conjugate poles will be closest together
and thus have the highest sensitivity to quantization.
Solution to Exercise (p. 5)
It requires more computation. The general state-variable equation9 requires nine multiplies, rather than
the �ve used by the Direct-Form II10 or Transpose-Form11 structures.

9"State-Variable Representation of Discrete-Time Systems", De�nition 1: "State"
<http://cnx.org/content/m11920/latest/#state>

10"IIR Filter Structures": Section Direct-Form II IIR Filter Structure <http://cnx.org/content/m11919/latest/#section3>
11"IIR Filter Structures": Section Transpose-Form IIR Filter Structure

<http://cnx.org/content/m11919/latest/#section4>
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