
OpenStax-CNX module: m11996 1

Lab 6: Timers on the MSP430
∗

adrian valenzuela

CJ Ganier

This work is produced by OpenStax-CNX and licensed under the

Creative Commons Attribution License 1.0†

Abstract

In this lab, we will cover various timing options for the MSP430.

In this lab, we will cover the timing options for the MSP430. The �rst part explains the clocking system of
the processor and the options it allows. The second part will cover the timers and timer interrupts available
on the MSP. Each of these sections is strongly related to real time programming, but that topic will be dealt
with separately in another lab. In general, a real-time application is one which responds to its inputs as
fast as they happen. The microprocessor is generally expected to take less time to handle an interrupt or
stimulus than the time before the next event will happen.

The timer system is broken into three primary parts on the MSP430: Timer A, Timer B, and the
Watchdog timer. Timer B is larger and more versatile than Timer A. The User's Guide1 and data sheet
will explain the di�erences, but the way that the control registers con�gure each timer is largely the same.
The watchdog timer will be covered in a module2 of its own. The timers are closely tied with real time
applications because they govern the occurrence of the periodic functions of the processor.

Exercise 1
Timer A
Refer to Chapter 11: Timer_A of the User's Guide3 to get a detailed description of all the
options in Timer A. Basically, setting up the timers requires that you de�ne a source for the timer
and to specify a direction for the count. It may also be helpful to clear the timer register before
you begin to guarantee and accurate count from the �rst instance. Set up Timer A in Continuous
Mode and sourced from SMCLK. Set TACCR0 and TACCR1 to have two di�erent values. Output
TA0 and TA1 from header J8 of the board so that you may directly observe the output of Timer
A. You may need to remove the jumpers in order to have access to these signals.

Using two di�erent channels of the Oscilloscope try to recreate parts of Figure 11-13. Output
Example- Timer in Continuous Mode. On Channel 1 show Output Mode 4: Toggle and
on Channel 2 show Output Mode 6: Toggle/Set. Vary the TACCTLx in order to get as close
to the orginal �gure as possible. Take a screenshot of the scope and include it in your lab report.

Try this again using Timer B. This time on Channel 1 show Output Mode 4: Toggle and on
Channel 2 show Output Mode 2: Toggle/Reset. Take a screenshot and submit it. What are
the di�erences between Timer A and Timer B? What was the frequency your signals? What is the
relationship between TACCTLx and the frequency?

∗Version 1.6: Aug 21, 2005 7:03 pm -0500
†http://creativecommons.org/licenses/by/1.0
1http://cnx.rice.edu/content/m12396/latest/usersguide.pdf
2"Watchdog Timer" <http://cnx.org/content/m11998/latest/>
3http://cnx.rice.edu/content/m12396/latest/usersguide.pdf

http://cnx.org/content/m11996/1.6/



OpenStax-CNX module: m11996 2

Exercise 2
Timer
Set up the timers to �re interrupts. Using the seg_count() function from lab 54, use the timers to
write a counter. The seven-segment display should display the number of seconds that have elapsed
since the timer was started. Button_1 should start/stop the timer. Once the seven-segment gets
to its maximum value of 15 it should roll over. There should be no for-loops in your program, and
should be entirely interrupt driven. You may use Timer A or Timer B. It is possible to have each
Capture Control Register to �re an interrupt once it reaches its max value. How was the timer set
up to calculate one second?

Exercise 3
Duty Cycle
We have discussed earlier that the Duty Cycle related to the width of a pulse. If we trigger an
LED with a reletively high frequency square wave, it will appear to be on constantly eventhough
it is actually switching on and o� quickly. As we vary the duty cycle of our trigger signal, then the
LED may appear to get dimmer or brighter depending on which way we vary it.

Set up the timers to toggle an LED. Without changing the frequency of your timing pulse,
change the duty cycle so that the LED appears to fade in and out. The time it takes to go from
completely o� to max brightness shouldn't take more than a second, then it should repeat. Once
again, there should be no for-loops in your program, and you can use any combination of the timers
that you wish.

Extra Credit: Once you get a single light to fade in and out, try to get all of the lights to fade
asynchronously. This means that while one LED is fading out the next one should begin to fade in
and so on. Good luck.

4"Lab 5: Interrupts" <http://cnx.org/content/m12322/latest/>

http://cnx.org/content/m11996/1.6/


