1

Chirp-z Transform*

Douglas L. Jones

This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0^{\dagger}

Abstract

Efficient scheme for computing samples of the z-transform. (Important special case: DFTs)

Let
$$z^k=AW^{-k}$$
, where $A=A_oe^{i\theta_o},\,W=W_oe^{-(i\phi_o)}$.
We wish to compute M samples, $k=[0,1,2,\ldots,M-1]$ of

$$X(z_k) = \sum_{n=0}^{N-1} x(n) z_k^{-n} = \sum_{n=0}^{N-1} x(n) A^{-n} W^{\text{nk}}$$

^{*}Version 1.4: Jun 21, 2004 12:37 pm -0500

 $^{^\}dagger \text{http://creative commons.org/licenses/by/1.0}$

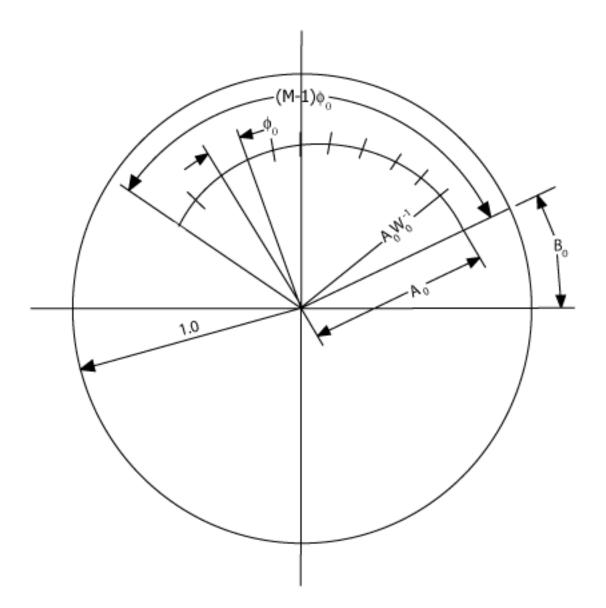
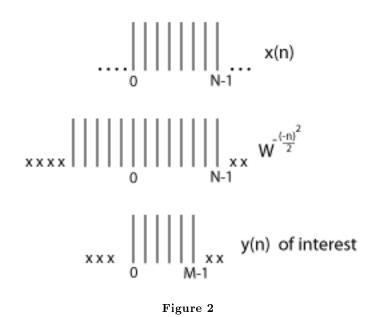


Figure 1

Note that
$$\left((k-n)^2 = n^2 - 2nk + k^2\right) \Rightarrow \left(nk = \frac{1}{2}\left(n^2 + k^2 - (k-n)^2\right)\right)$$
, So
$$X(z_k) = \sum_{n=0}^{N-1} x\left(n\right) A^{-n} W^{\frac{n^2}{2}} W^{\frac{k^2}{2}} W^{\frac{-(k-n)^2}{2}}$$
$$W^{\frac{k^2}{2}} \sum_{n=0}^{N-1} x\left(n\right) A^{-n} W^{\frac{n^2}{2}} W^{\frac{-(k-n)^2}{2}}$$

Thus, $X(z_k)$ can be compared by

- 1. Premultiply $x\left(n\right)$ by $A^{n}W^{\frac{n^{2}}{2}},\ n=\left[0,1,\ldots,N-1\right]$ to make $y\left(n\right)$ 2. Linearly convolve with $W^{\frac{-(k-n)^{2}}{2}}$
- 3. Post multiply by to get $W^{\frac{k^2}{2}}$ to get $X(z_k)$.
- 1. (list, item 1, p. 2) and 3. (list, item 3, p. 3) require N and M operations respectively. 2. (list, item 2, p. 3) can be performed efficiently using fast convolution.



 $W^{-\frac{n^2}{2}}$ is required only for $-(N-1) \le n \le M-1$, so this linear convolution can be implemented with $L \ge N+M-1$ FFTs.

NOTE: Wrap $W^{-\frac{n^2}{2}}$ around L when implementing with circular convolution.

So, a weird-length DFT can be implemented relatively efficiently using power-of-two algorithms via the chirp-z transform.

Also useful for "zoom-FFTs".