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Abstract

The radix-2 algorithms are the simplest FFT algorithms. The decimation-in-frequency (DIF) radix-2
FFT partitions the DFT computation into even-indexed and odd-indexed outputs, which can each be
computed by shorter-length DFTs of di�erent combinations of input samples. Recursive application of
this decomposition to the shorter-length DFTs results in the full radix-2 decimation-in-frequency FFT.

The radix-2 decimation-in-frequency and decimation-in-time1 fast Fourier transforms (FFTs) are the
simplest FFT algorithms2. Like all FFTs, they compute the discrete Fourier transform (DFT)3
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N )
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(1)

where for notational convenience W k
N = e−(i 2πk

N ). FFT algorithms gain their speed by reusing the results
of smaller, intermediate computations to compute multiple DFT frequency outputs.

1 Decimation in frequency

The radix-2 decimation-in-frequency algorithm rearranges the discrete Fourier transform (DFT) equation (1)
into two parts: computation of the even-numbered discrete-frequency indices X (k) for k = [0, 2, 4, . . . , N − 2]
(or X (2r) as in (2)) and computation of the odd-numbered indices k = [1, 3, 5, . . . , N − 1] (or X (2r + 1) as
in (3))
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1"Decimation-in-time (DIT) Radix-2 FFT" <http://cnx.org/content/m12016/latest/>
2"Overview of Fast Fourier Transform (FFT) Algorithms" <http://cnx.org/content/m12026/latest/>
3"DFT De�nition and Properties" <http://cnx.org/content/m12019/latest/>
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The mathematical simpli�cations in (2) and (3) reveal that both the even-indexed and odd-indexed
frequency outputs X (k) can each be computed by a length-N

2 DFT. The inputs to these DFTs are sums or
di�erences of the �rst and second halves of the input signal, respectively, where the input to the short DFT

producing the odd-indexed frequencies is multiplied by a so-called twiddle factor term W k
N = e−(i 2πk

N ).
This is called a decimation in frequency because the frequency samples are computed separately in
alternating groups, and a radix-2 algorithm because there are two groups. Figure 1 graphically illustrates
this form of the DFT computation. This conversion of the full DFT into a series of shorter DFTs with a
simple preprocessing step gives the decimation-in-frequency FFT its computational savings.

Figure 1: Decimation in frequency of a length-N DFT into two length-N
2
DFTs preceded by a prepro-

cessing stage.

Whereas direct computation of all N DFT frequencies according to the DFT equation4 would require N2

complex multiplies and N2 −N complex additions (for complex-valued data), by breaking the computation
into two short-length DFTs with some preliminary combining of the data, as illustrated in Figure 1, the
computational cost is now

New Operation Counts

4"DFT De�nition and Properties" <http://cnx.org/content/m12019/latest/>
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• 2
(

N
2

)2
+ N = N2

2 + N
2 complex multiplies

• 2N
2

(
N
2 − 1

)
+ N = N2

2 complex additions

This simple manipulation has reduced the total computational cost of the DFT by almost a factor of two!
The initial combining operations for both short-length DFTs involve parallel groups of two time samples,

x (n) and x
(
n + N

2

)
. One of these so-called butter�y operations is illustrated in Figure 2. There are N

2
butter�ies per stage, each requiring a complex addition and subtraction followed by one twiddle-factor

multiplication by Wn
N = e−(i 2πn

N ) on the lower output branch.

Figure 2: DIF butter�y: twiddle factor after length-2 DFT

It is worthwhile to note that the initial add/subtract part of the DIF butter�y is actually a length-2
DFT! The theory of multi-dimensional index maps5 shows that this must be the case, and that FFTs of any
factorable length may consist of successive stages of shorter-length FFTs with twiddle-factor multiplications
in between. It is also worth noting that this butter�y di�ers from the decimation-in-time radix-2 butter�y6

in that the twiddle factor multiplication occurs after the combining.

2 Radix-2 decimation-in-frequency algorithm

The same radix-2 decimation in frequency can be applied recursively to the two length-N
2 DFT

7s to save
additional computation. When successively applied until the shorter and shorter DFTs reach length-2, the
result is the radix-2 decimation-in-frequency FFT algorithm (Figure 3).

5"Multidimensional Index Maps" <http://cnx.org/content/m12025/latest/>
6"Decimation-in-time (DIT) Radix-2 FFT", Figure 2 <http://cnx.org/content/m12016/latest/#�g2>
7"DFT De�nition and Properties" <http://cnx.org/content/m12019/latest/>
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Figure 3: Radix-2 decimation-in-frequency FFT for a length-8 signal

The full radix-2 decimation-in-frequency decomposition illustrated in Figure 3 requires M = log2N stages,
each with N

2 butter�ies per stage. Each butter�y requires 1 complex multiply and 2 adds per butter�y. The
total cost of the algorithm is thus

Computational cost of radix-2 DIF FFT

• N
2 log2N complex multiplies

• N log2N complex adds

This is a remarkable savings over direct computation of the DFT. For example, a length-1024 DFT would
require 1048576 complex multiplications and 1047552 complex additions with direct computation, but only
5120 complex multiplications and 10240 complex additions using the radix-2 FFT, a savings by a factor
of 100 or more. The relative savings increase with longer FFT lengths, and are less for shorter lengths.
Modest additional reductions in computation can be achieved by noting that certain twiddle factors, namely
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N , require no multiplications, or fewer real multiplies than other ones. By
implementing special butter�ies for these twiddle factors as discussed in FFT algorithm and programming
tricks8, the computational cost of the radix-2 decimation-in-frequency FFT can be reduced to

• 2N log2N − 7N + 12 real multiplies
• 3N log2N − 3N + 4 real additions

The decimation-in-frequency FFT is a �ow-graph reversal of the decimation-in-time9 FFT: it has the same
twiddle factors (in reverse pattern) and the same operation counts.

note: In a decimation-in-frequency radix-2 FFT as illustrated in Figure 3, the output is in bit-

reversed order (hence "decimation-in-frequency"). That is, if the frequency-sample index n is

8"E�cient FFT Algorithm and Programming Tricks" <http://cnx.org/content/m12021/latest/>
9"Decimation-in-time (DIT) Radix-2 FFT" <http://cnx.org/content/m12016/latest/>
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written as a binary number, the order is that binary number reversed. The bit-reversal process is
illustrated here10.

It is important to note that, if the input data are in order before beginning the FFT computations, the
outputs of each butter�y throughout the computation can be placed in the same memory locations from
which the inputs were fetched, resulting in an in-place algorithm that requires no extra memory to perform
the FFT. Most FFT implementations are in-place, and overwrite the input data with the intermediate values
and �nally the output.

10"Decimation-in-time (DIT) Radix-2 FFT", Example 1: N=8 <http://cnx.org/content/m12016/latest/#ex1>
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