Skip to content Skip to navigation

OpenStax-CNX

You are here: Home » Content » Multirate Filtering: Theory Exercise (Thai Version)

Navigation

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Multirate Filtering: Theory Exercise (Thai Version)

Module by: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer, Dima Moussa, Daniel Sachs, Brian Wade, Patrick Frantz, Kamolchanok Kriengchaipruck. E-mail the authors

Based on: Multirate Filtering: Theory Exercise by Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer, Dima Moussa, Daniel Sachs, Brian Wade

Summary: You will work through an example problem that explores the effects of sample-rate compression and expansion on the spectrum of a signal.

Note: You are viewing an old version of this document. The latest version is available here.

Multirate Theory Exercise

พิจารณา sampled signal ที่มี DTFT Xω X ω แสดงใน รูป 1.

รูป 1: DTFT ของ input signal.
รูป 1 (prelab_input.png)

สมมติว่าAssuming U=D=3 U D 3 , ใช้ความสัมพันธ์ดังกล่าว ระหว่าง DTFT ของ signal ก่อนและหลัง sample-rate compression และ expansion (สมการ 1 and สมการ 2) เพื่อร่างค่า DTFT response ของ signal ที่ผ่านเข้าระบบ multirate ของ รูป 2 (โดยปราศจากการ filtering). รวมทั้ง intermediate response Wω W ω และ final response Yω Y ω . ให้ระวังว่าการแปลงค่าจาก digital frequency ω ω เป็น analog frequency ขึ้นอยู่กับค่า sampling rate. ฉะนั้นการแปลงค่า จึงแตกต่างกันสำหรั Xω X ω และ Wω W ω .

Wω=1D k =0D1Xω+2πkD W ω 1 D k 0 D 1 X ω 2 k D
(1)
Yω=WUω Y ω W U ω
(2)
รูป 2: Multirate System
รูป 2 (prelab_sys.png)

Content actions

Download module as:

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks