Skip to content Skip to navigation

OpenStax_CNX

You are here: Home » Content » The Problem of Face Recognition

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice University ELEC 301 Projects

    This module is included inLens: Rice University ELEC 301 Project Lens
    By: Rice University ELEC 301As a part of collection: "ELEC 301 Projects Fall 2004"

    Click the "Rice University ELEC 301 Projects" link to see all content affiliated with them.

  • Rice Digital Scholarship

    This module is included in aLens by: Digital Scholarship at Rice UniversityAs a part of collection: "ELEC 301 Projects Fall 2004"

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

Also in these lenses

  • Lens for Engineering

    This module is included inLens: Lens for Engineering
    By: Sidney BurrusAs a part of collection: "ELEC 301 Projects Fall 2004"

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.
 

The Problem of Face Recognition

Module by: Jon Krueger, Matthew Escarra, Marshall B. Robinson, Doug Kochelek. E-mail the authors

Summary: How does one go about recognizing face images?

Face recognition is a very interesting quandry. Ideally a face detection system should be able to take a new face and return a name identifying that person. Mathematically, what possible approach would be robust and fairly computationally economical? If we have a database of people, every face has special features that define that person. Greg may have a wider forehead, while Jeff has a scar on his right eyebrow from a rugby match as a young tuck. One technique may be to go through every person in the database and characterize it by these small features. Another possible approach would be to take the face image as a whole identity.

Statistically, faces can also be very similar. Walking through a crowd without glasses, blurry vision can often result in misidentifying someone, thus yielding an awkward encounter. The statistical similarities between faces gives way to an identification approach that uses the full face. Using standard image sizes and the same initial conditions, a system can be built that looks at the statistical relationship of individual pixels. One person may have a greater distance between his or her eyes then another, so two regions of pixels will be correlated to one another differently for image sets of these two people.

From a signal processing perspective the face recognition problem essentially boils down to the identification of an individual based on an array of pixel intensities. Using only these input values and whatever information can be gleaned from other images of known individuals the face recognition problem seeks to assign a name to an unknown set of pixel intensities.

Characterizing the dependencies between pixel values becomes a statistical signal processing problem. The eigenface technique finds a way to create ghost-like faces that represent the majority of variance in an image database. Our system takes advantage of these similarities between faces to create a fairly accurate and computationally "cheap" face recognition system.

Content actions

Download module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks