Connexions module: m12790

WINDOW DESIGN METHOD*

Douglas L. Jones

This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License †

The truncate-and-delay design procedure is the simplest and most obvious FIR design procedure.

Exercise 1

(Solution on p. 3.)

Is it any Good?

1 L2 optimization criterion

find $\forall n, 0 \leq n \leq M-1$: (h[n]), maximizing the energy difference between the desired response and the actual response: i.e., find

$$min_{\mathrm{hn}}\left\{\mathrm{hn},\int_{-\pi}^{\pi}\left(\left|H_{d}\left(\omega\right)-H\left(\omega\right)\right|\right)^{2}d\omega\right\}$$

by Parseval's relationship¹

$$min_{\text{hn}} \left\{ \text{hn}, \int_{-\pi}^{\pi} (|H_d(\omega) - H(\omega)|)^2 d\omega \right\} = 2\pi \sum_{n=-\infty}^{\infty} (|h_d[n] - h[n]|)^2 = 2\pi \left(\sum_{n=-\infty}^{-1} (|h_d[n] - h[n]|)^2 + \sum_{n=0}^{M-1} (|h_d[n] - h[n]|)^2 + \sum_{n=M}^{\infty} (|h_d[n] - h[n]|)^2 \right)$$
(1)

Since $\forall n, n < 0 \\ n \ge M : (h[n])$ this becomes

$$\min_{\text{hn}} \left\{ \text{hn}, \int_{-\pi}^{\pi} (|H_d(\omega) - H(\omega)|)^2 d\omega \right\} = \sum_{h=-\infty}^{-1} (|h_d[n]|)^2 + \sum_{n=0}^{\infty} (|h_d[n]|)^2 + \sum_{n=0}^{\infty} (|h_d[n]|)^2$$

NOTE: h[n] has no influence on the first and last sums.

The best we can do is let

$$h[n] = \begin{cases} h_d[n] & \text{if } 0 \le n \le M - 1 \\ 0 & \text{if else} \end{cases}$$

Thus $h[n] = h_d[n] w[n]$,

$$w[n] = \begin{cases} 1 & \text{if } 0 \le n(M-1) \\ 0 & \text{if else} \end{cases}$$

^{*}Version 1.2: Jun 9, 2005 10:42 am -0500

[†]http://creativecommons.org/licenses/by/2.0/

 $^{{\}rm ^{1}"Parseval's~Theorem"~<} {\rm http://cnx.org/content/m0047/latest/>}$

Connexions module: m12790 2

is **optimal** in a least-total-squared-error (L_2 , or energy) sense!

Exercise 2 (Solution on p. 3.)

Why, then, is this design often considered undersirable?

For desired spectra with discontinuities, the least-square designs are poor in a minimax (worst-case, or L_{∞}) error sense.

2 Window Design Method

Apply a more gradual truncation to reduce "ringing" (Gibb's Phenomenon²)

$$\forall n 0 \le n \le M - 1hn = hdnwn : (n 0 \le n \le M - 1hn = hdnwn)$$

NOTE:
$$H(\omega) = H_d(\omega) * W(\omega)$$

The window design procedure (except for the boxcar window) is ad-hoc and not optimal in any usual sense. However, it is very simple, so it is sometimes used for "quick-and-dirty" designs of if the error criterion is itself heurisitic.

 $^{^2}$ "Gibbs Phenomena" http://cnx.org/content/m10092/latest/

Connexions module: m12790 3

Solutions to Exercises in this Module

Solution to Exercise (p. 1)

Yes; in fact it's optimal! (in a certain sense)

Solution to Exercise (p. 2): Gibbs Phenomenon

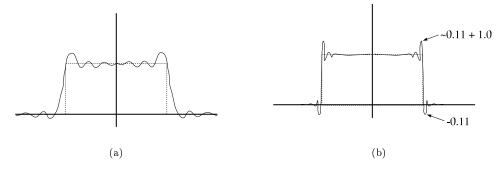


Figure 1: (a) $A(\omega)$, small M (b) $A(\omega)$, large M