Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » Señales y Sistemas » Par de la Transformada de Fourier Discreta en el Tiempo

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice Digital Scholarship

    This collection is included in aLens by: Digital Scholarship at Rice University

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

  • Featured Content display tagshide tags

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "Señales y Sistemas is a Spanish translation of Dr. Rich Baraniuk's collection Signals and Systems (col10064). The translation was coordinated by an an assistant electrical engineering professor […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Lens for Engineering

    This module and collection are included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Par de la Transformada de Fourier Discreta en el Tiempo

Module by: Don Johnson. E-mail the authorTranslated By: Fara Meza, Erika Jackson

Based on: Discrete-Time Fourier Transform Pair by Don Johnson

Summary: Calculando frecuencias discretas en el tiempo utilizando las transformadas de Fourier

Cuando obtenemos una señal discreta a muestrear una señal análoga, la frecuencia Nyquist corresponde a la frecuencia discreta 12 1 2 . Para demostrar esto, note que un senosoidal en la frecuencia Nyquist 12 T s 1 2 T s tiene una forma muestreada que iguala

Senosoidal en la Frecuencia Nyquist de 1/2T

cos2π×12 T s n T s =cosπn=1n 2 1 2 T s n T s n 1 n
(1)

El exponencial en la DTFT en la frecuencia 12 1 2 igual e(j2πn)2=e(jπn)=1n 2 n 2 n 1 n , lo que significa que la correspondencia entre una frecuencia análoga y una frecuencia discreta es establecida:

Relación para la Frecuencia Discreta en el Tiempo Análogo

f D = f A T s f D f A T s
(2)

onde f D f D y f A f A representan las variables de frecuencia análoga y frecuencia discreta, respectivamente. La figura de aliasing provee otra manera para derivar este resultado. Conforme la duración de cada punto en la señal de muestreo periódica p T s t p T s t se hace mas pequeña, las amplitudes de las repeticiones del espectro de la señal, que son gobernadas por los coeficientes de la series de Fourier de p T s t p T s t , se vuelve iguales. 1 Así, el espectro muestrario de la señal se convierte periódico con periodo 1 T s 1 T s . Así la frecuencia Nyquist 12 T s 1 2 T s corresponde a la frecuencia 12 1 2 .

La transformada inversa de Fourier discreta en el tiempo se deriva fácilmente en la siguiente relación:

1212e(j2πfm)ejπfndf={1  if  m=n0  if  mn 1 2 1 2 f 2 f m f n 1 m n 0 m n
(3)

Así como encontramos que

1212Sej2πfej2πfndf=1212mmsme(j2πfm)ej2πfndf=mmsm1212e((j2πf))(mn)df=sn f 1 2 1 2 S 2 f 2 f n f 1 2 1 2 m m s m 2 f m 2 f n m m s m f 1 2 1 2 2 f m n s n
(4)

Los pares para la transformada de Fourier discretos en el tiempo son

Pares de la Transformada de Fourier en Tiempo Discreto

Sej2πf=nnsne(j2πfn) S 2 f n n s n 2 f n
(5)

Pares de la Transformada de Fourier en Tiempo Discreto

sn=1212Sej2πfej2πfndf s n f 1 2 1 2 S 2 f 2 f n
(6)

Footnotes

  1. Examinar la señal de pulso periodica revela que cuando Δ Δ se hace pequeña, el valor de c 0 c 0 , el coeficiente mas grande de Fourier, decae al valor cero: | c 0 |=AΔT c 0 A Δ T . Así, para mantener un teorema de muestreo viable en términos matemáticos, la amplitud A A debe incrementar a 1Δ 1 Δ , convirtiéndose infinitamente grande conformela duración del pulso disminuye. Sistemas prácticos usan un valor pequeño de Δ Δ , digamos 0.1 T s 0.1 T s y usan amplificadores para reescalar la señal.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks