Skip to content Skip to navigation

OpenStax-CNX

You are here: Home » Content » Series de Fourier y los Sistemas LTI

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice Digital Scholarship

    This module is included in aLens by: Digital Scholarship at Rice UniversityAs a part of collection: "Señales y Sistemas"

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

  • Featured Content display tagshide tags

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "Señales y Sistemas"

    Comments:

    "Señales y Sistemas is a Spanish translation of Dr. Rich Baraniuk's collection Signals and Systems (col10064). The translation was coordinated by an an assistant electrical engineering professor […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Lens for Engineering

    This module is included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Series de Fourier y los Sistemas LTI

Module by: Justin Romberg. E-mail the authorTranslated By: Fara Meza, Erika Jackson

Based on: Fourier Series and LTI Systems by Justin Romberg

Summary: (Blank Abstract)

Introduciendo las Series de Fourier a los Sistemas LTI

Antes de ver este modulo, usted debería familiarizarse con los conceptos de Eigenfunciones de los sistemas LTI. Recuerde, para sistema LTI tenemos la siguiente relación

Figura 1: Señales de entrada y salida para nuestro sitema LTI.
Figura 1 (simpleLTIsys.png)

donde est s t es una eigenfunción de . Su eigenvalor correspondiente Hs H s pueden ser calculado usando la respuesta de impulso ht h t Hs=hτe(sτ)d τ H s τ h τ s τ

Así, usando la expansión de las series de Fourier para ft f t periódica donde usamos la entrada ft=n c n ei ω 0 nt f t n c n ω 0 n t en el sistema,

Figura 2: Sistema LTI
Figura 2 (Transferfunc.png)

nuestra salida yt y t será yt=nHi ω 0 n c n ei ω 0 nt y t n H ω 0 n c n ω 0 n t Podemos ver que al aplicar las ecuaciones de expansión de series de fourier, podemos ir de ft f t a c n c n y viceversa, y es lo mismo para la salida, yt y t

Efectos de las Series de Fourier

Podemos pensar de un sistema LTI como el ir moldeando el contenido de la frecuencia de la entrada. Mantenga en mente el sistema básico LTI que presentamos en figura 2. El sistema LTI, , multiplica todos los coeficientes de Fourier y los escala.

Dado los coeficientes de Fourier de la entrada c n c n y los eigen valores del sistema Hi w 0 n H w 0 n , las series de Fourier de la salida, es Hi w 0 n c n H w 0 n c n (una simple multiplicación de termino por termino).

note:

los eigenvalores, Hi w 0 n H w 0 n describen completamente lo que un sistema LTI le hace a una señal periódica con periodo T=2π w 0 T 2 w 0

Ejemplo 1

¿Qué hace este sistema?

Figura 3
Figura 3 (fslti_f1.png)

Ejemplo 2

Y, ¿esté sistema?

Figura 4
(a) (b)
Figura 4(a) (fslti_f2.png)Figura 4(b) (fslti_f3.png)

Examples

Ejemplo 3: El circuito RC

ht=1RCetRCut h t 1 R C t R C u t

¿Qué es lo que este sistema hace a las series de fourier de la ft f t ?

Calcula los eigenvalores de este sistema

Hs=hτe(sτ)d τ =01RCeτRCe(sτ)d τ =1RC0e(τ)(1RC+s)d τ =1RC11RC+se(τ)(1RC+s)| τ =0=11+RCs H s τ h τ s τ τ 0 1 R C τ R C s τ 1 R C τ 0 τ 1 R C s 1 R C 1 1 R C s τ 0 τ 1 R C s 1 1 R C s
(1)

Ahora, decimos que a este circuito RC lo alimentamos con una entrada ft f t periódica (con periodo T=2π w 0 T 2 w 0 ).

Vea los eigen valores para s=i w 0 n s w 0 n |Hi w 0 n|=1|1+RCi w 0 n|=11+R2C2 w 0 2n2 H w 0 n 1 1 R C w 0 n 1 1 R 2 C 2 w 0 2 n 2

El circuito RC es un sistema pasa bajas: pasa frecuencias bajas n n alrededor de 0 0) atenúa frecuencias altas ( n n grandes).

Ejemplo 4: Pulsó cuadrado a través del Circuito RC

  • Señal de entrada : tomando las series de Fourier ft f t c n =12sinπ2nπ2n c n 1 2 2 n 2 n 1t 1 t en n=0 n 0
  • Sistema : Eigenvalores Hi w 0 n=11+iRC w 0 n H w 0 n 1 1 R C w 0 n
  • Señal de salida: tomando las series de Fourier de yt y t d n =Hi w 0 n c n =11+iRC w 0 n12sinπ2nπ2n d n H w 0 n c n 1 1 R C w 0 n 1 2 2 n 2 n

d n =11+iRC w 0 n12sinπ2nπ2n d n 1 1 R C w 0 n 1 2 2 n 2 n yt= n d n ei w 0 nt y t n d n w 0 n t

¿Qué podemos decir sobre yt y t de d n d n ?

  1. ¿Es yt y t real?
  2. ¿ Es yt y t simétrico par? ¿simétrico impar?
  3. ¿Comó se yt y t ¿es mas “suave” que ft f t ? (el radio de descomposición de d n d n vs. c n c n )

d n =11+iRC w 0 n12sinπ2nπ2n d n 1 1 R C w 0 n 1 2 2 n 2 n | d n |=11+RC w 0 2n212sinπ2nπ2n d n 1 1 R C w 0 2 n 2 1 2 2 n 2 n

Content actions

Download module as:

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks