Skip to content Skip to navigation

OpenStax_CNX

You are here: Home » Content » Teoremas de Plancharel y Parseval

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice Digital Scholarship

    This module is included in aLens by: Digital Scholarship at Rice UniversityAs a part of collection: "Señales y Sistemas"

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

  • Featured Content display tagshide tags

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "Señales y Sistemas"

    Comments:

    "Señales y Sistemas is a Spanish translation of Dr. Rich Baraniuk's collection Signals and Systems (col10064). The translation was coordinated by an an assistant electrical engineering professor […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Lens for Engineering

    This module is included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Teoremas de Plancharel y Parseval

Module by: Justin Romberg. E-mail the authorTranslated By: Fara Meza, Erika Jackson

Based on: Plancharel and Parseval's Theorems by Justin Romberg

Summary: Este modulo contiene la definición del teorema de Plancharel y del teorema de Parseval con sus demostraciones y ejemplos.

Teorema de Plancharel

Theorem 1: Teorema de Plancharel

El producto interno de dos vectores/señales es el mismo que en 2 2 el producto interno de su expansión de coeficientes.

Sea b i b i una base ortonormal para un Espacio de Hilbert H H. xH x H , yH y H x= i α i b i x i α i b i y= i β i b i y i β i b i entonces x,y H = i α i β i ¯ x y H i α i β i

Ejemplo

Aplicando las Series de Fourier, podemos ir de ft f t a c n c n y de gt g t a d n d n 0Tftgt¯d t = n = c n d n ¯ t 0 T f t g t n c n d n el producto interno en el dominio-tiempo = producto interno de los coefientes de Fourier.

Proof

x= i α i b i x i α i b i y= j β j b j y j β j b j x,y H = i α i b i , j β j b j = i α i ( b i , j β j b j )= i α i j β j ¯( b i , b j )= i α i β i ¯ x y H i α i b i j β j b j i α i b i j β j b j i α i j β j b i b j i α i β i usando las reglas del producto interno.

nota:
b i , b j =0 b i b j 0 cuando ij i j y b i , b j =1 b i b j 1 cuando i=j i j

Si el espacio de Hillbert H tiene un ONB, los productos internos son equivalentes a los productos internos en 2 2 .

Todo H con ONB son de alguna manera equivalente a 2 2 .

punto de interes:
las secuencias de cuadrados sumables son importantes.

Teorema de Parseval

Theorem 2: Teorema de Parseval

La energía de una señal = suma de los cuadrados de su expansión de coeficientes.

Sea xH x H , b i b i ONB

x= i α i b i x i α i b i Entonces xH2= i | α i |2 H x 2 i α i 2

Proof

Directamente de Plancharel xH2= x,x H = i α i α i ¯= i | α i |2 H x 2 x x H i α i α i i α i 2

Ejemplo

Series de Fourier 1Tei w 0 nt 1 T w 0 n t ft=1T n c n 1Tei w 0 nt f t 1 T n c n 1 T w 0 n t 0T|ft|2d t = n =| c n |2 t 0 T f t 2 n c n 2

Content actions

Download module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks