Skip to content Skip to navigation

OpenStax_CNX

You are here: Home » Content » Señales Periódicas

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice Digital Scholarship

    This module is included in aLens by: Digital Scholarship at Rice UniversityAs a part of collection: "Señales y Sistemas"

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

  • Featured Content display tagshide tags

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "Señales y Sistemas"

    Comments:

    "Señales y Sistemas is a Spanish translation of Dr. Rich Baraniuk's collection Signals and Systems (col10064). The translation was coordinated by an an assistant electrical engineering professor […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Lens for Engineering

    This module is included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Señales Periódicas

Module by: Michael Haag, Justin Romberg. E-mail the authorsTranslated By: Fara Meza, Erika Jackson

Based on: Periodic Signals by Michael Haag, Justin Romberg

Summary: Este modulo define una funcion periodica y describe las dos maneras comunes de pensar sobre una señal periodica.

Recordemos que las funciones periódicas son funciones en las cuales su forma se repite exactamente después de un periodo o ciclo. Nosotros representaremos la definición de una función periódica matemáticamente como:

ft=ft+mT m :mZ f t f t m T m m
(1)
donde T>0 T 0 representa el periodo. Por esta razón, usted podrá ver esta señal ser llamada la señal periódica-T. Cualquier función que satisfaga esta ecuación es periódica.

Podemos pensar en funciones periódicas (con periodo-TT) de dos diferentes maneras:

#1) Como una función en todos R

Figura 1: Función en todosR donde f t 0 =f t 0 +T f t 0 f t 0 T
Figura 1 (per_fxn1.png)

#2) O, podemos podemos recortar todas las redundancias, y pensar en ellas como funciones en un intervalo 0 T 0 T (O, en términos generales, a a+T a a T ). Si sabemos que la señal es periódica-t entonces toda la información de la señal se encuentra en este intervalo.

Figura 2: Remueva la redundancia de la funcion periodica para que ft f t no esta definido afuera 0 T 0 T .
Figura 2 (per_fxn2.png)

Una funcion aperiodica CT ft f t no se repite para cualquier TR T ; i.e. no existe ninguna T T s.t. esta ecuacion es verdadera.

Pregunta: ¿ La definición de DT ?

Tiempo Continuo

Tiempo Discreto

Nota: Circular vs. Linear

Content actions

Download module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks