Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Señales y Sistemas » La Transformada Inversa de Laplace

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice Digital Scholarship

    This collection is included in aLens by: Digital Scholarship at Rice University

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

  • Featured Content display tagshide tags

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "Señales y Sistemas is a Spanish translation of Dr. Rich Baraniuk's collection Signals and Systems (col10064). The translation was coordinated by an an assistant electrical engineering professor […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Lens for Engineering

    This module and collection are included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

La Transformada Inversa de Laplace

Module by: Steven J. Cox. E-mail the authorTranslated By: Fara Meza, Erika Jackson

Based on: The Inverse Laplace Transform by Steven J. Cox

Summary: This module introduces the Inverse Laplace Transform. Building on the groundwork done in the Laplace Transform module, this module gives some background into the Inverse Laplace method, and uses MATLAB's ilaplace command to find the actual solutions to a problem.

To Come

En la Función de Transferencia estableceremos que la función para la transformada de Laplace es hh es

-1ht=12πe(c+yj)th(c+yj)tdy h t 1 2 y c y t h c y t
(1)
donde j2-1 2 -1 y el numero real ccson escogidos para que todas las singularidades de hh se encuentren en el lado izquierdo del integral.

Continuando con la Transformada Inversa de Laplace

Con la transformada inversa de Laplace podemos expresar la solución de x=Bx+g x B x g , como

xt=-1sIB-1(g+x0) x t s I B g x 0
(2)
Por ejemplo, tomaremos el primer componente de x x ,nombrado x 1 s=0.19(s2+1.5s+0.27)s+164(s3+1.655s2+0.4078s+0.0039) . x 1 s 0.19 s 2 1.5 s 0.27 s 1 6 4 s 3 1.655 s 2 0.4078 s 0.0039 . Definimos:
Definition 1: polos
También llamadas como singularidades estos son los punto ss en los cuales x 1 s x 1 s explota.
Son las raíces del denominador,
-1 /100 ,    -329 /400±27316 ,    and    -1/6 . -1 100,   ± -329 400 2 73 16 ,  and  -16.
(3)
Las cuatro son negativas, es suficiente tomar c=0 c 0 así la integración de ecuación 1 continua en el eje imaginario. No suponemos que el lector aya encontrado integraciones en el plano complejo pero esperamos que este ejemplo provea la motivación necesaria para examinarla. Sin embargo antes de esto hay que notar que MATLAB tiene el cálculo necesario para desarrollar este punto. Volviendo a fib3.m observamos que el comando ilaplace produce x 1 t=211.35et100(0.0554t3+4.5464t2+1.085t+474.19)et6+e(329t)400(262.842cosh273t16)+262.836sinh273t16 x 1 t 211.35 t 100 0.0554 t 3 4.5464 t 2 1.085 t 474.19 t 6 329 t 400 262.842 2 73 t 16 262.836 2 73 t 16

Figura 1: Los 3 potenciales asociados con el modelo del circuito RC .
Figura 1 (fib3_fig1.png)

Los otros potenciales, vistos en esta figura posen una expresión similar. Por favor note que cada uno de los polos de x 1 x 1 se muestra como exponencial x 1 x 1 y que los coeficientes del exponencial son polinomios con grados que son determinados por el orden de su respectiva polos.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks