Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Señales y Sistemas » Teorema de Nyquist

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice Digital Scholarship

    This collection is included in aLens by: Digital Scholarship at Rice University

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

  • Featured Content display tagshide tags

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "Señales y Sistemas is a Spanish translation of Dr. Rich Baraniuk's collection Signals and Systems (col10064). The translation was coordinated by an an assistant electrical engineering professor […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Lens for Engineering

    This module and collection are included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
Download
x

Download collection as:

  • PDF
  • EPUB (what's this?)

    What is an EPUB file?

    EPUB is an electronic book format that can be read on a variety of mobile devices.

    Downloading to a reading device

    For detailed instructions on how to download this content's EPUB to your specific device, click the "(what's this?)" link.

  • More downloads ...

Download module as:

  • PDF
  • EPUB (what's this?)

    What is an EPUB file?

    EPUB is an electronic book format that can be read on a variety of mobile devices.

    Downloading to a reading device

    For detailed instructions on how to download this content's EPUB to your specific device, click the "(what's this?)" link.

  • More downloads ...
Reuse / Edit
x

Collection:

Module:

Add to a lens
x

Add collection to:

Add module to:

Add to Favorites
x

Add collection to:

Add module to:

 

Teorema de Nyquist

Module by: Justin Romberg. E-mail the authorTranslated By: Fara Meza, Erika Jackson

Based on: Nyquist Theorem by Justin Romberg

Summary: Este modulo introduce el Teorema de Nyquist.

Introducción

Anteriormente habia estado expuesto a los conceptos detras del muestreo y el teorema de muestreo. Mientras aprendía estas ideas, debio haber empezado a notar que si muestreamos a muy bajo valor, hay una oportunidad que nuestra señal original no sea únicamente definida por nuestra señal muestreada. Si esto sucede, entonces no es garantia de que recontruyamos correctamente la señal. Como resultado de esto, el Teorema de Nyquist ha sido creado. A continuación veremos exactamente lo que este torema nos dice.

Teorema de Nyquist

Sea TT igual a nuestro período de muestreo (distancia entre las muestras). Después sea Ωs =2πT Ωs 2 T (frecuencia de muestreo radianes/seg). Hemos visto que si ft f t es limitado en banda en ΩB ΩB ΩB ΩB y muestreamos con período (T<π Ωb )((2π Ωs <π ΩB )( Ωs >2 ΩB )) T Ωb 2 Ωs ΩB Ωs 2 ΩB entonces podemos reconstruir ft f t de sus muestras.

Theorem 1: Teorema de Nyquist ("Teorema Fundamental de Procesamiento Digital de Señales DSP")

Si ft f t es limitado en banda a ΩB ΩB ΩB ΩB , podemos reconstruirlo perfectamente de sus muestras fs n=fnT fs n f n T para Ωs =2πT>2 ΩB Ωs 2 T 2 ΩB

ΩN =2 ΩB ΩN 2 ΩB es llamada la "frecuencia Nyquist " para ft f t . Para la reconstrucción perfecta de ser posible Ωs 2 ΩB Ωs 2 ΩB donde Ωs Ωs es la frecuancia de muestreo y ΩB ΩB es la frecuencia más alta en la señal.

Figura 1: Illustración de la Frecuencia Nyquist
Figura 1 (nyq_f1a.png)

Ejemplo 1: Ejemplos:

  • El oído humano oye frecuencias hasta 20 kHz → CD el valor de la muestra es 44.1 kHz.
  • La linea telefónica pasa frecuencias de hasta 4 kHz → la muestra de la compañia de telefonos es de 8 kHz.

Reconstrucción

La formula de la reconstrucción en el dominio del tiempo se ve como ft=n= fs nsinπT(tnT)πT(tnT) f t n fs n T t n T T t n T Podemos concluir, desde antes que sinπT(tnT)πT(tnT)  ,   nZ    n n T t n T T t n T es una base para el espacio de ΩB ΩB ΩB ΩB funciones limitadas en banda, ΩB =πT ΩB T . Los coeficientes de expansión para esta base son calculados muestreando ft f t en el valor 2πT=2 ΩB 2 T 2 ΩB .

nota:

La base también es ortogonal. Para hacerla ortonormal, necesitamos un factor de normalización de T T .

La gran Pregunta

Exercise 1

¿Que pasa si Ωs <2 ΩB Ωs 2 ΩB ? ¿Qué sucede cuando muestreamos abajo del valor de Nyquist?

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Reuse / Edit:

Reuse or edit collection (?)

Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.

| Reuse or edit module (?)

Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.