
OpenStax-CNX module: m13082 1

Just how large is a 64-bit address?
∗

Rick Simpson

This work is produced by OpenStax-CNX and licensed under the

Creative Commons Attribution License 3.0†

Abstract

For decades we've used 16-bit and 32-bit computers. Now 64-bit computers are becoming a�ordable.
This module makes clear the enormous increase in memory addressing capability of 64-bit addresses by
comparing the physical sizes of familiar objects.

1 A bit of history

The �rst personal computers were 16-bit machines. They dealt naturally with 16-bit-wide binary quanti-
ties: they had a word size of 16 bits. This did not a�ect the size of the numbers that they could compute
with, but it a�ected memory addressing. Generally, memory addresses were limited to 16-bit numbers,
meaning that they ranged between 0 and 216− 1, or 65, 535. That's only 64Ki bytes1, where "Ki" stands for
"kilobinary", or 1024. While that was enough memory for early BASIC programs, it's not nearly enough for
modern programs that use today's elaborate full-color windowed user interfaces.

The 16-bit addresses of the early machines were too small even then. Hardware schemes involving
segmentation registers were introduced so that more than 64K bytes of memory could be attached to the
computer. The operating system would manipulate the segmentation registers so that di�erent parts of the
memory could be used by di�erent programs, or by the same program at di�erent times. Fundamentally,
though, the programs had to deal with 16-bit memory addresses.

It took a computer hardware revolution to �x this. The new personal computers were 32-bit machines:
they used 32-bit integers and 32-bit memory addresses. 32-bit memory addresses range from 0 to 232 − 1,
or 4, 294, 967, 295. This is 4Gi bytes, "four gigabinary bytes", a bit more than four billion bytes. Personal
computers didn't actually have this much storage, of course (at least not back then), but the size of the
address stopped being a programming problem. Any ordinary register in the computer could hold a memory
address that points anywhere in memory. The operating system had no need to manipulate segmentation
registers to make it look (at least momentarily) like a 16-bit register could address whatever data was being
used.

It's di�cult to express how big an impact this was on program developers. Suddenly, size of programs
and data was no longer a problem. Things had to �t in the memory the computer had, but this was much
more than 64Ki bytes. Programming became much simpler; programs could be larger, could incorporate
more functions, and could do much bigger tasks. The bene�ts of the larger address were signi�cant enough
that it was worth going through porting di�culties in order to move operating systems and applications
from 16-bit to 32-bit machines.

Today 16-bit machines are history as far as personal computers and larger computers are concerned. 16-
bit processors are still made (they are generally very inexpensive) but they are used for specialized purposes

∗Version 1.2: Oct 28, 2010 10:16 am -0500
†http://creativecommons.org/licenses/by/3.0/
1"Pre�xes for binary multiples" <http://cnx.org/content/m13081/latest/>

http://cnx.org/content/m13082/1.2/

OpenStax-CNX module: m13082 2

such as controlling appliances and automobiles rather than in general-purpose computers. Almost all of
today's PCs and large server computers are 32-bit machines, with the exceptions being 64-bit machines.

Sixty-four-bit machines are becoming increasingly common. Once limited to the machine rooms of large
companies because of their expense and physical size, 64-bit computers can now be purchased as home PCs.
They use 64-bit integers and 64-bit memory addresses. Sixty-four-bit memory addresses range from 0 to
264 − 1, or 18, 446, 744, 073, 709, 551, 615, or about 1.845× 1019, 18.45 exabytes. Such a large number is well
beyond our everyday experience. We may think we understand how to compare 16-bit and 32-bit memory
sizes, 65 thousand to 4 billion, but 1.845 × 1019. is beyond our comprehension as just a number. The goal
of this module is to make the size di�erence real to us by comparing the sizes of familiar physical objects.

2 Comparing surface areas

Let's assume that each individual address in our computer represents a small area such as a tiny portion
of a piece of paper. The computer's entire memory is represented by the piece of paper, and each memory
address "addresses" a small part of it.

We'll start with a 16-bit computer, and assume that 16-bit addresses can span the surface of a 4-inch
square Post-it® (Section 6: Notes) note (Figure 1 (Sixteen-bit addressing)).

Sixteen-bit addressing

Figure 1: A 16-bit-wide address can span the area of a 4-inch Post-it note (16 sq in; 103 sq cm)

Each individual memory address in our 16-bit computer then represents

area of note

memory size
=

16 sq in

216
=

1
4096

sq in = .000244sq in = .157sq mm (1)

Imagine the note covered with an array of tiny squares, each 1/64 inch (.4 mm) on a side. This is about
the size of a dot made by a pencil with a .4 mm lead. Each memory address would then designate one of
the small squares (Figure 2 (Mapping addresses to areas)).

http://cnx.org/content/m13082/1.2/

OpenStax-CNX module: m13082 3

Mapping addresses to areas

Figure 2: The Post-it note divided into small squares, one square per unique 16-bit address

Let's move on to 32-bit addressing and see how much bigger computer memory can be when we double
the width of the address. Each individual address will still represent the same amount of surface area,
a square 1/64 inch (.4 mm) on a side. Now we'll have 232 addresses, or 4,294,967,296 rather than 65,536.

232 is
(
216

)2
, so our 32-bit address covers 65,536 times as much area as our 16-bit address. This is far too

much area for a piece of paper, so we'll have to move to something a bit larger: a tennis court, including
the surrounding out-of-bounds area (Figure 3 (Thirty-two-bit addressing)). If you had 65,536 Post-it notes,
each 4 inches square, you could just about cover a tennis court with them.

Thirty-two-bit addressing

Figure 3: A 32-bit address can span the area of a tennis court, 120 by 60 feet (7200 sq ft, 669 sq m)

http://cnx.org/content/m13082/1.2/

OpenStax-CNX module: m13082 4

A 32-bit address can span so much more area than a 16-bit address that it goes beyond just being bigger
or even a lot bigger, it's di�erent in some fundamental way. The vast increase in the amount of memory that
can be addressed by a program means that not only can existing programs be adapted to deal with larger
problems, but new applications that weren't possible at all on the smaller machine can now be created.

The �nal step, at least for now, is to a 64-bit address. Sixty-four-bit machines are still not common today,
but they have become a�ordable even to consumers (in late 2010, Hewlett-Packard2 's Internet list price for
a workstation containing an AMD 64-bit processor was US $759). Again, the wider address spans so much
more memory than in the previous generation that things are fundamentally di�erent. To see this, we'll still
let each individual address be represented by a tiny square 1/64 inch (.4 mm) on a side. 16-bit addressing
required only a Post-it note to represent all the memory, while 32-bit addressing required a tennis court.

64-bit addressing spans 264 bytes, which is
(
232

)2
. Our 64-bit address spans more than four billion times

as much memory as a 32-bit address. Even using our tiny square area to represent each memory address
requires a considerable portion of the earth's surface to represent 264 bytes of memory: Western Europe
(Figure 4 (Sixty-four-bit addressing)).

Sixty-four-bit addressing

Figure 4: A 64-bit address can span the area of most of Western Europe (1,123,314 sq mi; 2,909,370 sq
km)

3 Length, distance

Let's compare lengths rather than areas. We'll assume that 16-bit addresses span only half a millimetre, the
diameter of a common pencil lead. Then each individual address represents a length of

.5mm

216
= .0000076mm (2)

2http://www.hp.com

http://cnx.org/content/m13082/1.2/

OpenStax-CNX module: m13082 5

This is a tiny length, just .0076 microns. When we consider that the width of the tiny lines etched onto a
modern computer chip are roughly 1 micron, then we can see how small it really is.

Now that we've established what length one individual address corresponds to, and we see what 216 of
them correspond to (.5 mm), we can scale our length up for 32-bit and 64-bit addressing (Table 1: Comparing
distances).

Comparing distances

An address this wide Spans this length Which is approximately

16 bits .5 mm Width of a pencil dot

32 bits 114.27 feet (34.83 m) Height of a 10-story building

64 bits 1 A.U. Distance from the Earth to the Sun

Table 1

So if we start with a tiny block so short that 130 of them stacked up would be only 1 micron high, by
the time we stack up 264 of them our stack would reach from the Earth to the Sun, about 93,000,000 miles
(about 150,000,000 km).

4 Time

If we have a disk that will hold 264 bytes of data and we use it to hold one long video recording, how long
could that recording be?

We'll use round numbers to make things easy. Let's assume that each frame recorded by our video
camera consists of 1 megabyte. That would be a moderate size image in full color, with no compression.
Like many video cameras, ours records 30 frames each second. Thus, each second of video will require 30M
bytes of space.

total disk bytes

bytes per sec
=

264

30× 106 = 6.149× 1011sec = 19, 484years (3)

With an 18.45 exabyte disk and a large enough battery, we could have set up a video camera 19,500 years
ago, during the last ice age, and let it record continually day and night (Figure 5 (A video camera recording
for 19,500 years)). It would just be �lling up the disk now.

http://cnx.org/content/m13082/1.2/

OpenStax-CNX module: m13082 6

A video camera recording for 19,500 years

Figure 5: A video camera recording for the past 19,500 years would just be �lling its 18.45 exabyte disk
now

5 Conclusion

By equating various widths of computer memory addresses to familiar objects and then comparing the sizes
of those objects, we gain some insight into just how large a 64-bit memory address is. The cold, hard number
18,446,744,073,709,551,616 has no real meaning for us, but seeing that that many almost in�nitesimal boxes,
each less than 1/100 micron high, would make a stack equal in height to the distance between the Earth
and the Sun convinces us that 264 is really big. We can see how computer programs can treat memory
as a completely di�erent kind of resource on a 64-bit computer, compared to memory on a 32-bit or 16-bit
computer.

So now we know what "big" means, at least until we see our �rst 128-bit computer....

6 Notes

• AMD Opteron is a trademark of Advanced Micro Devices3 .
• Intel is a registered trademark of Intel Corporation4 .
• Post-it is a registered trademark of 3M Company5 .

Glossary

De�nition 1: 16-bit machine

A computer with 16-bit-wide internal registers, and an address width of 16 bits.

De�nition 2: 32-bit machine

A computer with 32-bit-wide internal registers, and an address width of 32 bits.

De�nition 3: 64-bit machine

A computer with 64-bit-wide internal registers, and an address width of 64 bits.

3http://www.amd.com
4http://www.intel.com
5http://www.3m.com

http://cnx.org/content/m13082/1.2/

OpenStax-CNX module: m13082 7

De�nition 4: Word size

Originally, this was the "natural" data width of the machine: the amount of data that could be
loaded from memory or stored to memory in one operation. It was generally the width of the
machine's registers. As computer to memory interfaces have gotten more elaborate, the word size
has less meaning. 32-bit computers based on Intel (Section 6: Notes) processors still have a "word
size" of 16 bits, even though they load and store 32-bit quantities. This is because the de�nition
of "word" has not been changed for Intel's processors since the days of 16-bit machines. Much
technical documentation refers to 16-bit words and 32-bit doublewords. Registers on an Intel 32-bit
processor can each hold a doubleword.

De�nition 5: Memory addressing

Computers refer to memory locations by address, where an address is just a number. Memory
addresses typically start at 0 and run to a number that's the total size of memory minus 1 (minus
1 because the �rst memory location is 0 rather than 1). The amount of memory that a computer
can have is determined by the width of the memory address, because the width determines how
large a number can be used as a memory address.

De�nition 6: Porting

Moving an existing program from one machine to another. If the machines are identical or almost
so, this may mean just copying the program from one place to another. If the machines have
di�erent instruction sets, it may mean recompiling the program to generate an executable �le for
the new machine. If some other aspect of the machine is di�erent, in particular the width of the
machine's memory address, it may involve making modi�cations to the program before recompiling.
The e�ort required to port a program may range from trivial to extremely di�cult.

http://cnx.org/content/m13082/1.2/

