
Connexions module: m13240 1

An algorithm to implement a

boolean function using only NAND's

or only NOR's.
∗

Katherine Fletcher

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

An algorithm to implement a boolean function as a gate network using only NAND's or only NOR's
is presented. Any boolean function can be implemented straightforwardly using AND's, OR's, and NOT
gates. Using DeMorgan's Law in di�erent forms gates in the network can be successively converted to
use only NAND's or only NOR's.

NAND's and NOR's are the most common basic logic circuit element in use because they are simpler
to build than AND and OR gates, and because each is logically complete . Many logical functions
are expressed using AND's, OR's, and Inverters (NOT), however, because an implementing circuit can be
constructed straightforwardly from the truth table expression of a logical function and because Karnaugh

Map's can be used to minimize AND, OR, INVERTER networks.
This document is adapted, with permission, from algorithms and examples given in Dr. Jump's Elec326

course notes. [1]
Below a simple algorithm is given for converting a network with AND gates, OR gates and INVERTERS

to one with NAND gates or NOR gates exclusively. First the boolean function is represented using AND's,
OR's, and NOT gates. Then, using DeMorgan's Law in various forms, the AND, OR, INVERTER network
is converted step-by-step to use only NAND gates or only NOR gates.

DeMorgan's Law using Boolean Algebra

OR to NAND AND to NOR

a ∨ b ≡ ¬ (¬a ∧ ¬b) a ∧ b ≡ ¬ (¬a ∨ ¬b)

Table 1

∗Version 1.6: Sep 4, 2009 10:51 am -0500
†http://creativecommons.org/licenses/by/2.0/

http://cnx.org/content/m13240/1.6/



Connexions module: m13240 2

DeMorgan's Laws Illustrated Using Logic Gates

Figure 1: The �gure is adapted with permission from Dr. Robert Jump's Elec326 lecture notes [1].
The �rst two rows of the �gure above illustrate DeMorgan's Law using gates. The third row illustrates
how to eliminate any inverters with either NAND or NOR gates.

Conversion Algorithm

1. Draw AND, OR, INVERTER implementation. First draw out an implementation of the boolean
function using AND gates, OR gates and INVERTERS. Any implementation that uses only those three
gate types will work. One way to implement a boolean function using AND's, OR's and INVERTERS is
to build the Disjunctive Normal Form of the boolean function from the truth table that describes
the function. Disjunctive Normal Form, is also called Sum of Products form. Propositional Logic:
Normal Forms 1 gives a succinct treatment of normal forms and of how to go from a truth table to
Disjunctive Normal Form.

2. Apply DeMorgan's Law. Apply DeMorgan's Law to the circuit by using the equivalences in the �rst
two rows of the Figure above. To create a NAND only circuit, use the transforms in the left box, and
for a NOR only circuit use the transforms in the right-hand box.

3. Remove redundant inverters: Any time that two inverters are in series (an inverted output goes directly
in to an inverted input), remove both of them, since they cancel each other out.

4. Replace remaining inverters. Replace any remaining inverters with the equivalent NAND or NOR
implementation (the third row of the Figure).

Example 1

1"Propositional Logic: normal forms" <http://cnx.org/content/m12075/latest/>

http://cnx.org/content/m13240/1.6/



Connexions module: m13240 3

Conversion Example

Figure 2: Example conversion to a NAND only network.

Note that in step c. the �nal elimination of inverters isn't quite done since B and D are inverted
into one of the NAND's.

Glossary

De�nition 1: Karnaugh Map

A visual map of the truth table of a boolean expression and an algorithm for removing redundant
elements to realize a minimized boolean expression.

De�nition 2: logically complete

A set of circuit gates or logical elements is logically complete if any boolean function representable
by a truth table can be realized using only gates or elements from that set.
Example

AND, OR, and NOT is a logically complete set. NAND is logically complete. NOR is logically
complete.

http://cnx.org/content/m13240/1.6/



Connexions module: m13240 4

References

[1] Robert Jump. NAND/NOR Networks. Unpublished course notes from Elec 326, Rice University, De-
partment of Electrical and Computer Engineering, Houston TX 77251, 2004.

http://cnx.org/content/m13240/1.6/


