Connexions module: m13352

FINDING THE DOMAIN OF SIMPLE RATIONAL FUNCTIONS*

Pradnya Bhawalkar Kim Johnston

This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License †

Abstract

Finding the domain of rational functions with no other complications such as roots/radicals.

For fractions, the denominator (the bottom) of the fraction cannot equal 0. Determine **domain** restrictions by setting the denominator equal to 0 and solving.

Example 1	
Find the domain of $y = \frac{1}{x}$	
$\{x \mid x \neq 0\}$	
Exercise 1	(Solution on p. 2.)
Find the domain of $y = \frac{1}{x-5}$	
Exercise 2	(Solution on p. 2.)
Find the domain of $y = \frac{4x+3}{x-7}$	• • • • • • • • • • • • • • • • • • • •
Exercise 3	(Solution on p. 2.)
Find the domain of $y = \frac{7x}{5-2x}$	· ,
Exercise 4	(Solution on p. 2.)
Find the domain of $y = \frac{2}{(x-3)(x+7)}$	· ,
Exercise 5	(Solution on p. 2.)
Find the domain of $y = \frac{7x}{2x^2 - 7x + 3}$	· ,
Exercise 6	(Solution on p. 2.)
$y = \frac{2x+1}{(x+5)^2}$	
Exercise 7	(Solution on p. 2.)
Find the domain of $y = \frac{x+3}{x^2+25}$	· ,
Exercise 8	(Solution on p. 2.)
Find the domain of $y = \frac{x-7}{x^2+2}$	
Exercise 9	(Solution on p. 2.)
Find the domain of $y = \frac{5}{ x-3 }$	
Exercise 10	(Solution on p. 2.)
Find the domain of $y = \frac{4}{ x -4}$	· - /
120 -	

^{*}Version 1.7: May 1, 2006 6:47 pm -0500

[†]http://creativecommons.org/licenses/by/2.0/

Connexions module: m13352

Solutions to Exercises in this Module

```
Solution to Exercise (p. 1)
 \{x \mid x \neq 5\} \text{ since } x - 5 \neq 0, x \neq 5
Solution to Exercise (p. 1)
 \{x \mid x \neq 7\} since x - 7 \neq 0, x \neq 7
Solution to Exercise (p. 1)
\{x \mid x \neq \frac{5}{2}\} \text{ since } 5 - 2x \neq 0, \ x \neq \frac{5}{2}
Solution to Exercise (p. 1)
 \{x \mid x \neq 3 \lor -7\} since x \neq 3 and x \neq -7
Solution to Exercise (p. 1) \{x \mid x \neq \frac{1}{2} \lor 3\} since 2x^2 - 7x + 3 \neq 0, (2x - 1)(x - 3) \neq 0, 2x - 1 \neq 0 and x - 3 \neq 0, x \neq \frac{1}{2} and x \neq 3
Solution to Exercise (p. 1) \{x \mid x \neq -5\} since (x+5)^2 \neq 0, x+5 \neq 0, x \neq -5
Solution to Exercise (p. 1) \{x \mid x \in \mathbb{R}\}\ \text{since}\ x^2 + 25 \neq 0,\ x^2 \neq -25,\ x \in \mathbb{R}
Solution to Exercise (p. 1) \{x \mid x \in \mathbb{R}\}\ \text{since}\ x^2 + 2 \neq 0,\ x^2 \neq -2,\ x \in \mathbb{R}
Solution to Exercise (p. 1)
 \{x \mid x \neq 3\} \text{ since } |x-3| \neq 0, x-3 \neq 0, x \neq 3
Solution to Exercise (p. 1)
 \{x \mid x \neq -4 \ \lor \ 4\} \text{ since } |x| - 4 \neq 0, \ |x| \neq 4, \ x \neq -4 \text{ and } x \neq 4\}
```