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Abstract

This course is a short series of lectures on Introductory Statistics. Topics covered are listed in the

Table of Contents. The notes were prepared by Ewa Paszek and Marek Kimmel. The development of

this course has been supported by NSF 0203396 grant.

1 MAXIMUM LIKELIHOOD ESTIMATION - EXAMPLES

1.1 EXPONENTIAL DISTRIBUTION

Let X1, X2, ..., Xn be a random sample from the exponential distribution with p.d.f.

f (x; θ) =
1
θ
e−x/θ, 0 < x <∞, θ ∈ Ω = {θ; 0 < θ <∞}.

The likelihood function is given by

L (θ) = L (θ;x1, x2, ..., xn) =
(

1
θ
e−x1/θ

)(
1
θ
e−x2/θ

)
· · ·
(

1
θ
e−xn/θ

)
=

1
θn

exp
(
−
∑n
i=1 xi
θ

)
, 0 < θ <∞.

The natural logarithm of L (θ) is

lnL (θ) = − (n) ln (θ)− 1
θ

n∑
i=1

xi, 0 < θ <∞.

Thus,
d [lnL (θ)]

dθ
=
−n
θ

+
∑n
i=1 xi
θ2

= 0.

The solution of this equation for θ is

θ =
1
n

n∑
i=1

xi = x.
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Note that,
d [lnL (θ)]

dθ
=

1
θ

(
−n+

nx

θ

)
> 0, θ < x,

d [lnL (θ)]
dθ

=
1
θ

(
−n+

nx

θ

)
= 0, θ = x,

d [lnL (θ)]
dθ

=
1
θ

(
−n+

nx

θ

)
< 0, θ > x,

Hence, lnL (θ) does have a maximum at x, and thus the maximum likelihood estimator for θ is

^
θ= X =

1
n

n∑
i=1

Xi.

This is both an unbiased estimator and the method of moments estimator for θ.

1.2 GEOMETRIC DISTRIBUTION

Let X1, X2, ..., Xn be a random sample from the geometric distribution with p.d.f.

f (x; p) = (1− p)x−1
p, x = 1, 2, 3, ....

The likelihood function is given by

L (p) = (1− p)x1−1
p(1− p)x2−1

p · · · (1− p)xn−1
p = pn(1− p)

P
xi−n, 0 ≤ p ≤ 1.

The natural logarithm of L (θ) is

lnL (p) = nlnp+

(
n∑
i=1

xi − n

)
ln (1− p) , 0 < p < 1.

Thus restricting p to 0 < p < 1 so as to be able to take the derivative, we have

dlnL (p)
dp

=
n

p
−
∑n
i=1 xi − n
1− p

= 0.

Solving for p, we obtain

p =
n∑n
i=1 xi

=
1
x
.

So the maximum likelihood estimator of p is

^
p=

n∑n
i=1Xi

=
1
X

Again this estimator is the method of moments estimator, and it agrees with the intuition because, in n

observations of a geometric random variable, there are n successes in the
∑n
i=1 xi trials. Thus the estimate

of p is the number of successes divided by the total number of trials.
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1.3 NORMAL DISTRIBUTION

Let X1, X2, ..., Xn be a random sample from N (θ1, θ2), where

Ω = ((θ1, θ2) : −∞ < θ1 <∞, 0 < θ2 <∞) .

That is, here let θ1 = µ and θ2 = σ2. Then

L (θ1, θ2) =
n∏
i−1

(
1√

2πθ2
exp

[
− (xi − θ1)2

2θ2

])
,

or equivalently,

L (θ1, θ2) =
(

1√
2πθ2

)n
exp

[
−
−
∑n
i=1 (xi − θ1)2

2θ2

]
, (θ1, θ2) ∈ Ω.

The natural logarithm of the likelihood function is

lnL (θ1, θ2) = −n
2

ln (2πθ2)−
−
∑n
i=1 (xi − θ1)2

2θ2
.

The partial derivatives with respect to θ1 and θ2 are

∂ (lnL)
∂θ1

=
1
θ2

n∑
i=1

(xi − θ1)

and
∂ (lnL)
∂θ2

=
−n
2θ2

+
1

2θ22

n∑
i=1

(xi − θ1)2.

The equation
∂(lnL)
∂θ1

= 0 has the solution θ1 = x. Setting ∂(lnL)
∂θ2

= 0 and replacing θ1 by x yields

θ2 =
1
n

n∑
i=1

(xi − x)
2

.

By considering the usual condition on the second partial derivatives, these solutions do provide a maxi-

mum. Thus the maximum likelihood estimators

µ = θ1

and

σ2 = θ2

are
^
θ1 = X

and
^
θ2 =

1
n

n∑
i=1

(
Xi −X

)2
.

Where we compare the above example with the introductory one, we see that the method of moments

estimators and the maximum likelihood estimators for µ and σ2 are the same. But this is not always the case.

If they are not the same, which is better? Due to the fact that the maximum likelihood estimator of θ has

an approximate normal distribution with mean θ and a variance that is equal to a certain lower bound, thus

at least approximately, it is unbiased minimum variance estimator. Accordingly, most statisticians prefer

the maximum likelihood estimators than estimators found using the method of moments.
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1.4 BINOMIAL DISTRIBUTION

Observations:k successes in n Bernoulli trials.

f (x) =
n!

x! (n− x)!
px(1− p)n−x

L (p) =
n∏
i=1

f (xi) =
n∏
i=1

(
n!

xi! (n− xi)!
pxi(1− p)n−xi

)
=

(
n∏
i=1

n!
xi! (n− xi)!

)
pxi(1− p)n−

Pn
i=1 xi

lnL (p) =
n∑
i=1

xilnp+

(
n−

n∑
i=1

xi

)
ln (1− p)

dlnL (p)
dp

=
1
p

n∑
i=1

xi −

(
n−

n∑
i=1

xi

)
1

1− p
= 0

(
1−

^
p

)∑n
i=1 xi − (n−

∑n
i=1 xi)

^
p

^
p

(
1−

^
p

) = 0

n∑
i=1

xi−
^
p

n∑
i=1

xi − n
^
p +

n∑
i=1

xi
^
p= 0

^
p=

∑n
i=1 xi
n

=
k

n

1.5 POISSON DISTRIBUTION

Observations: x1, x2, ..., xn,

f (x) =
λxe−λ

x!
, x = 0, 1, 2, ...

L (λ) =
n∏
i=1

(
λxie−λ

xi!

)
= e−λn

λ
∑n
i=1 xi∏n
i=1 xi

lnL (λ) = −λn+
n∑
i=1

xilnλ− ln

(
n∏
i=1

xi

)

dl

dλ
= −n+

n∑
i=1

xi
1
λ

−n+
n∑
i=1

xi
1
λ

= 0

^
λ=

∑n
i=1 xi
n
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