Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » Physics for K-12 » Position vector

Navigation

Table of Contents

Recently Viewed

This feature requires Javascript to be enabled.
 

Position vector

Module by: Sunil Kumar Singh. E-mail the author

Summary: Position vector encapsulates directional feature of a position in the volumetric space of the coordinate system.

Position vector is a convenient mathematical construct to encapsulate the twin ideas of magnitude (how far?) and direction (in which direction?) of the position, occupied by an object.

Definition 1: Position vector
Position vector is a vector that extends from the reference point to the position of the particle.

Figure 1: Position vector is represented by a vector, joining origin to the position of point object
Position vector
 Position vector (pv1.gif)

Generally, we take origin of the coordinate system as the reference point.

It is easy to realize that vector representation of position is appropriate, where directional properties of the motion are investigated. As a matter of fact, three important directional attributes of motion, namely displacement, velocity and acceleration are defined in terms of position vectors.

Consider the definitions : the “displacement” is equal to the change in position vector; the “velocity” is equal to the rate of change of position vector with respect to time; and “acceleration” is equal to the rate of change of velocity with respect to time, which, in turn, is the rate of change of position vector. Thus, all directional attributes of motion is based on the processing of position vectors.

Position Vector in component form

One of the important characteristics of position vector is that it is rooted to the origin of the coordinate system. We shall find that most other vectors associated with physical quantities, having directional properties, are floating vectors and not rooted to a point of the coordinate system like position vector.

Recall that scalar components are graphically obtained by dropping two perpendiculars from the ends of the vector to the axes. In the case of position vector, one of the end is the origin itself. As position vector is rooted to the origin, the scalar components of position vectors in three mutually perpendicular directions of the coordinate system are equal to the coordinates themselves. The scalar components of position vector, r, by definition in the designated directions of the rectangular axes are :

x = r cos α y = r cos β z = r cos γ x = r cos α y = r cos β z = r cos γ

Figure 2: Scalar components are equal to coordiantes of the position
Scalar components of a vector
 Scalar components of a vector (pv2.gif)

and position vector in terms of components (coordinates) is :

r = x i + y j + z k r = x i + y j + z k

where i i , j j and k k are unit vectors in x, y and z directions.

The magnitude of position vector is given by :

r = | r | = ( x 2 + y 2 + z 2 ) r = | r | = ( x 2 + y 2 + z 2 )

Example 1: Position and distance

Problem : Position (in meters) of a moving particle as a function of time (in seconds) is given by :

r = ( 3 t 2 - 3 ) i + ( 4 - 7 t ) j + ( - t 3 ) k r = ( 3 t 2 - 3 ) i + ( 4 - 7 t ) j + ( - t 3 ) k

Find the coordinates of the positions of the particle at the start of the motion and at time t = 2 s. Also, determine the linear distances of the positions of the particle from the origin of the coordinate system at these time instants.

Solution : The coordinates of the position are projection of position vector on three mutually perpendicular axes. Whereas linear distance of the position of the particle from the origin of the coordinate system is equal to the magnitude of the position vector. Now,

When t = 0 (start of the motion)

r = ( 3 x 0 - 3 ) i + ( 4 - 7 x 0 ) j + ( - 0 ) k r = ( 3 x 0 - 3 ) i + ( 4 - 7 x 0 ) j + ( - 0 ) k

The coordinates are :

x = - 3 m and y = 4 m x = - 3 m and y = 4 m

and the linear distance from the origin is :

r = | r | = ( ( - 3 ) 2 + 4 2 ) ) = 25 = 5 m r = | r | = ( ( - 3 ) 2 + 4 2 ) ) = 25 = 5 m

When t = 2 s

r = ( 3 x 2 2 - 3 ) i + ( 4 - 7 x 2 ) j + ( - 2 3 ) k = 9 i - 10 j - 8 k r = ( 3 x 2 2 - 3 ) i + ( 4 - 7 x 2 ) j + ( - 2 3 ) k = 9 i - 10 j - 8 k

The coordinates are :

x = 9 m, y = - 10 m and z = - 8 m. x = 9 m, y = - 10 m and z = - 8 m.

and the linear distance from the origin is :

r = | r | = ( 9 2 + ( - 10 ) 2 + ( - 8 ) 2 ) ) = 245 = 15.65 m r = | r | = ( 9 2 + ( - 10 ) 2 + ( - 8 ) 2 ) ) = 245 = 15.65 m

Motion types and position vector

Position is a three dimensional concept, requiring three coordinate values to specify it. Motion of a particle, however, can take place in one (linear) and two (planar) dimensions as well.

In two dimensional motion, two of the three coordinates change with time. The remaining third coordinate is constant. By appropriately choosing the coordinate system, we can eliminate the need of specifying the third coordinate.

In one dimensional motion, only one of the three coordinates is changing with time. Other two coordinates are constant through out the motion. As such, it would be suffice to describe positions of the particle with the values of changing coordinate and neglecting the remaining coordinates.

A motion along x –axis or parallel to x – axis is, thus, described by x - component of the position vector i.e. x – coordinate of the position as shown in the figure. It is only the x-coordinate that changes with time; other two coordinates remain same.

Figure 3:
Motion in one dimesnion
 Motion in one dimesnion (pv3.gif)

The description of one dimensional motion is further simplified by shifting axis to the path of motion as shown below. In this case, other coordinates are individually equal to zero.

x = x; y = 0; z = 0 x = x; y = 0; z = 0

Figure 4:
Motion in one dimesnion
 Motion in one dimesnion (pv4.gif)

In this case, position vector itself is along x – axis and, therefore, its magnitude is equal to x – coordinate.

Examples

Example 2

Problem : A particle is executing motion along a circle of radius “a” with a constant angular speed “ω” as shown in the figure. If the particle is at “O” at t = 0, then determine the position vector of the particle at an instant in xy - plane with "O" as the origin of the coordinate system.

Figure 5: The particle moves with a constant angular velocity.
A particle in circular motion
 A particle in circular motion  (vq1.gif)

Solution : Let the particle be at position “P” at a given time “t”. Then the position vector of the particle is :

Figure 6: The particle moves with a constant angular velocity starting from “O” at t = 0.
A particle in circular motion
 A particle in circular motion  (vq2.gif)

r = x i + y j r = x i + y j

Note that "x" and "y" components of position vector is measured from the origin "O". From the figure,

y = a sin θ = a sin ω t y = a sin θ = a sin ω t

It is important to check that as particle moves in clockwise direction, y-coordinate increase in first quarter starting from origin, decreases in second quarter and so on. Similarly, x-coordinate is given by the expression :

x = a - a cos ω t = a ( 1 - cos ω t ) x = a - a cos ω t = a ( 1 - cos ω t )

Thus, position vector of the particle in circular motion is :

r = a ( 1 - cos ω t ) i + a sin ω t j r = a ( 1 - cos ω t ) i + a sin ω t j

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks