

 [image: FIR Filtering: Basic Assembly Exercise for TI TMS320C54x]

 FIR Filtering: Basic Assembly Exercise for TI TMS320C55x
By: Thomas Shen and Douglas Jones
Based on: FIR Filtering: Basic Assembly Exercise for TI TMS320C54x <http://cnx.org/content/m10022/2.22> by Douglas Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janevitz, Michael Kramer, Dima Moussa, Daniel Sachs, Brian Wade, and Jason Laska.
Online: <http://cnx.org/content/m13810/1.5/>
This module is copyrighted by Thomas Shen.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/
Module revised: 2007/09/06

FIR Filtering: Basic Assembly Exercise for TI TMS320C55x
By: Thomas Shen and Douglas Jones
Based on: FIR Filtering: Basic Assembly Exercise for TI TMS320C54x <http://cnx.org/content/m10022/2.22> by Douglas Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janevitz, Michael Kramer, Dima Moussa, Daniel Sachs, Brian Wade, and Jason Laska.
Online: <http://cnx.org/content/m13810/1.5/>
This module is copyrighted by Thomas Shen.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/
Module revised: 2007/09/06

FIR Filtering: Basic Assembly Exercise for TI TMS320C55x

Summary
You will work through a section of TI TMS320C55x assembly code by hand. The instructions include multiplication of fractional numbers in two's complement representation.

1. Assembly Exercise

 Analyze the following lines of code. Refer to Two's Complement and Fractional Arithmetic
	for 16-bit Processors, Addressing Modes for TI TMS320C55x,
	and the Mnemonic
	Instruction Set [url] manual for help.

	1 FIR_len .set 3
 2
	3 ; Assume:
	4 ; BK03 = FIR_len
	5 ; firStateIndex is stored at memory location 1008h
	6 ; AR2 = 1000h
	7 ; AR3 = 1004h
	8 ; FRCT = 1
 9
	10 BSET	AR3LC		; sets circular addressing for AR3
 11 mov mmap(AR3), BSA23
 12 mov #firStateIndex, AR4
 13 mov *AR4, AR3
	14 mov LO(AC0),*AR3+
 15 mov #0, AC0
	16 rpt #(FIR_len-1)
	17 macm *AR2+,*AR3+,AC0
	

 Anything following a ";" is considered a comment.
	In this case, the comments indicate the contents of the
	auxiliary registers, the BK03 register, and the address registers before the execution of
	the first instruction, mov.
 The line FIR_len .set 3 defines the name FIR_len as equal to 3. The BK03 register contains the length of the
 circular buffer we want to use for auxiliary register 0 through 3. The BSET AR3LC modifies the increment operator + so that it
 behaves as a circular buffer. This means circular addressing will be used for AR3. Refer to Section 6.11 of the CPU Reference Guide [url] for help on circular addressing.

 Note that any number
	followed by an "h" or preceded with a
	0x represents a hexadecimal value.

 Example 1.

	 1000h and 0x1000 both refer to the decimal number 4096.
	

	Assume that the data memory is initialized as follows starting
	at location 1000h.

Table 1. Data Memory Assignment (before execution)Data Memory Assignment (before execution)
	Memory location	Value
	1000h	1000h
	1001h	0000h
	1002h	4000h
	 	
	1004h	1000h
	1005h	1000h
	1006h	4000h
	1007h	1000h
	1008h	0000h

 After familiarizing yourself with the mov,
	rpt, and macm instructions, step
	through each line of code and record the values of the
	accumulator AC0 and auxiliary registers
	AR2 and AR3 in the spaces provided
	in Table 2. Additionally, record the value
	of the memory contents after all three instructions have been
	"executed" in the blank data memory table in ???.

Table 2. Execution Results	AC0	AR2	AR3	
	
 00 0000 8000h
 	
 1000h
 	
 1004h
 	at start of code
	 	 	 	after mov instruction line 11
	 	 	 	after mov instruction line 12
	 	 	 	after mov instruction line 13
	 	 	 	after mov instruction line 14
	 	 	 	after mov instruction line 15
	 	 	 	after rpt instruction line 16
	 	 	 	after first macm instruction
	 	 	 	
		 after second macm instruction
		
	 	 	 	after third macm instruction

 When working through the exercise, take into account that the
	accumulator AC0 is a 40-bit register, and that the
	multiplier is in the fractional arithmetic mode.
	In this mode, integers on the DSP are interpreted as
	fractions, and the multiplier will treat them accordingly.
	This is done by shifting the result of the integer multiplier
	in the ALU left one bit. (All the arithmetic is fractional in these examples.)
 Multiplies performed by the ALU
	(via the macm instruction) produce a result that
	is twice what you would expect if you just multiplied the two
	integers together. DSP numerical representation and
	arithmetic are described further in Two's Complement and Fractional Arithmetic
	for 16-bit Processors.

Table 3. Data Memory Assignment (after execution)Data Memory Assignment (after execution)
	Memory location	Value
	1000h	
	1001h	
	1002h	
	 	
	1004h	
	1005h	
	1006h	
	1007h	
	1008h	

content/cover.png
FIR Filtering:
Basic Assembly
Exercise for TI

TMS320C55x

