OpenStax CNX

Sections
You are here: Home » Content » m27 - The Shah Function

About: m27 - The Shah Function

Module by: C. Sidney Burrus. E-mail the author

View the content: m27 - The Shah Function

Metadata

Name: m27 - The Shah Function
ID: m13899
Language: English (en)
Summary: If distributions are allowed, the Fourier transform of an infinite string of delta functions is an infinite string of delta function. These are called shah functions because of the similarity to the Russion letter.
Subject: Science and Technology
Keywords: delta function, pitch fork function, shah function
Document Type: -//CNX//DTD CNXML 0.5 plus MathML//EN
License: Creative Commons Attribution License CC-BY 2.0

Authors: C. Sidney Burrus (csb@rice.edu)
Copyright Holders: C. Sidney Burrus (csb@rice.edu)
Maintainers: C. Sidney Burrus (csb@rice.edu), Doug Kochelek (kochelek@rice.edu)

Latest version: 1.1 (history)
First publication date: Aug 1, 2006 1:49 pm -0500
Last revision to module: Sep 17, 2006 1:37 pm -0500

Downloads

PDF: m13899_1.1.pdf PDF file, for viewing content offline and printing. Learn more.
XML: m13899_1.1.cnxml XML that defines the structure and contents of the module, minus any included media files. Can be reimported in the editing interface. Learn more.

Version History

Version: 1.1 Sep 17, 2006 1:37 pm -0500 by C. Sidney Burrus
Changes:
checked

How to Reuse and Attribute This Content

If you derive a copy of this content using a OpenStax-CNX account and publish your version, proper attribution of the original work will be automatically done for you.

If you reuse this work elsewhere, in order to comply with the attribution requirements of the license (CC-BY 2.0), you must include

  • the authors' names: C. Burrus
  • the title of the work: m27 - The Shah Function
  • the OpenStax-CNX URL where the work can be found: http://cnx.org/content/m13899/1.1/

See the citation section below for examples you can copy.

How to Cite and Attribute This Content

The following citation styles comply with the attribution requirements for the license (CC-BY 2.0) of this work:

American Chemical Society (ACS) Style Guide:

Burrus, C. m27 - The Shah Function, OpenStax-CNX Web site. http://cnx.org/content/m13899/1.1/, Sep 17, 2006.

American Medical Assocation (AMA) Manual of Style:

Burrus C. m27 - The Shah Function [OpenStax-CNX Web site]. September 17, 2006. Available at: http://cnx.org/content/m13899/1.1/.

American Psychological Assocation (APA) Publication Manual:

Burrus, C. (2006, September 17). m27 - The Shah Function. Retrieved from the OpenStax-CNX Web site: http://cnx.org/content/m13899/1.1/

Chicago Manual of Style (Bibliography):

Burrus, C.. "m27 - The Shah Function." OpenStax-CNX. September 17, 2006. http://cnx.org/content/m13899/1.1/.

Chicago Manual of Style (Note):

C. Burrus, "m27 - The Shah Function," OpenStax-CNX, September 17, 2006, http://cnx.org/content/m13899/1.1/.

Chicago Manual of Style (Reference, in Author-Date style):

Burrus, C. 2006. m27 - The Shah Function. OpenStax-CNX, September 17, 2006. http://cnx.org/content/m13899/1.1/.

Modern Languages Association (MLA) Style Manual:

Burrus, C.. m27 - The Shah Function. OpenStax-CNX. 17 Sep. 2006 <http://cnx.org/content/m13899/1.1/>.