Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » ELEC 301 Projects Fall 2006 » Astronomical Image Deconvolution: Weiner Filter Approach

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice University ELEC 301 Projects

    This collection is included inLens: Rice University ELEC 301 Project Lens
    By: Rice University ELEC 301

    Click the "Rice University ELEC 301 Projects" link to see all content affiliated with them.

  • Rice Digital Scholarship

    This collection is included in aLens by: Digital Scholarship at Rice University

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

Also in these lenses

  • Lens for Engineering

    This collection is included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.
 

Astronomical Image Deconvolution: Weiner Filter Approach

Module by: Brenton Loeffelman. E-mail the author

Summary: How we plan to use Weiner filters to solve our multiple image deconvolution problem.

Of the several different techniques currently used for MISO-D type problems, all share a similar two-step strategy: the problem is first reduced to a SISO-D problem through the use of statistical tools, and then an appropriate method is then used to solve the now simplified problem. Our strategy will employ Weiner filters as a SISO-D technique to look at each individual data image and acquire an estimate of the original object; we will then obtain a single estimate of our original object by using a noise-weighted average of our previous estimates.

Several other techniques have been employed in the solving of SISO-D and MISO-D problems. Notable SISO-D techniques are wavelet and curvelet based approaches, as well as iterative solutions. These solutions were developed because Fourier based approaches (such as Weiner filters) do not work particularly well for discontinuous signals. Also, several new strategies have been looked at to convert MISO-D problems to SISO-D problems, including the use of sufficient statistics.

Our choice of a Fourier-based strategy involving Weiner filters was made due to the high amount of noise in our signals (which the Weiner filter acts to reduce), as well as their ease of use; many of the more optimal solutions are also far more complex, and beyond the scope of an undergraduate course.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks