Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » ELEC 301 Projects Fall 2006 » Bose-Lertrattanapanich Pixel Interpolation

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice University ELEC 301 Projects

    This collection is included inLens: Rice University ELEC 301 Project Lens
    By: Rice University ELEC 301

    Click the "Rice University ELEC 301 Projects" link to see all content affiliated with them.

  • Rice Digital Scholarship

    This collection is included in aLens by: Digital Scholarship at Rice University

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

Also in these lenses

  • Lens for Engineering

    This collection is included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.
 

Bose-Lertrattanapanich Pixel Interpolation

Module by: Jennifer Gillenwater, J. Ryan Stinnett, Elica Skorcheva. E-mail the authors

Summary: One method for interpolating the pixel values of several low-resolution (LR) images to create a single high-resolution (HR) image is to approximate the patches of a Delaunay triangulation with bivariate polynomials.

In data processing applications, it often occurs that certain points on a surface are known and are all samples of a common function (ex: an image). However, if these samples are too few for a particular purpose (ex: viewing an image in high resolution), then the question arises: how can the value of this function at other points be found? If there is no formula that, given (x,y) will return the function's value, then such a formula must be approximated. Interpolation is the generation of such an approximation.

The task of creating a high-resolution (HR) image from a set of low-resolution (LR) images requires interpolation. One method, Bose-Lertrattanapanich interpolation, is described below.

  1. Given a set of LR images and a registration algorithm, apply the registration algorithm to obtain a set of non-uniformly distributed points. These points represent the relative locations of all LR pixel values.
  2. Construct a Delaunay triangulation of the points.
    Figure 1: MATLAB Delaunay triangulation of registered points from a set of LR images.
    Delaunay Triangulation Example
    Delaunay Triangulation Example (60triangulation.bmp)
  3. Estimate the gradient vector of image intensity (dz/dx,dz/dy) at each triangle vertex from the normal vectors of surrounding regions.
    Figure 2: The gradient vector at a vertex (dz/dx,dz/dy) can be estimated from the normal vector at the vertex: n = [nx,ny,nz]. n is calculated by summing the normal vectors of the surrounding triangle patches weighted by their areas, then dividing this sum by the total area of these triangles. The result is dz/dx = -nx/nz, dz/dy = -ny/nz. (Source: 2)
    Normal Vector at a Vertex
    Normal Vector at a Vertex (normalvec.bmp)
  4. Approximate the image intensity values (z) for each triangle patch by a continuous surface.
    Figure 3: Bivariate polynomial to model surface; c values are based on the gradient vectors. (Source: 2)
    Figure 3 (cequation.bmp)
  5. For each point (x,y) on the HR grid, apply the appropriate polynomial to calculate the pixel value.

There are many simpler implementations of the last three steps of this process. The algorithm our code implements generates a constant function for each triangle patch, rather than a bivariate polynomial. In our implementation, the interpolated pixel value in each triangle patch (pT) is the average of the pixel values at the three vertices of each triangle (pA,pB,pC): pT = (pA + pB + pC)/3. This function is less accurate than the bivariate polynomial, but is more intuitive and cost-efficient to implement.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks