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Abstract

Conservation of angular momentum of an isolated system is a general and fundamental law.

Conservation of angular momentum is a powerful general law that encapsulates various aspects of motion
as a result of internal interactions. The conservation laws, including this one, actually addresses situations
of motions, which otherwise can not be dealt easily by direction application of Newton's law of motion. We
encounter rotation, in which the rotating body is changing mass distribution and hence moment of inertia.
For example, a spring board diver or a skater displays splendid rotational acrobatics by manipulating mass
distribution about the axis of rotation. Could we deal such situation easily with Newton's law (in the angular
form)? Analysis of motions like these is best suited to the law of conservation of angular momentum.

Conservation of angular momentum is generally believed to be the counterpart of conservation of linear
momentum as studied in the case of translation. This perception is essentially �awed. As a matter of fact, this
is a generalized law of conservation applicable to all types of motions. We must realize that conservation law
of linear momentum is a subset of more general conservation law of angular momentum. Angular quantities
are all inclusive of linear and rotational quantities. As such, conservation of angular momentum is also all
inclusive. However, this law is regarded to suit situations, which involve rotation. This is the reason that
we tend to identify this conservation law with rotational motion.

The domain of application for di�erent conservation laws are di�erent. The conservation law pertaining to
linear momentum is broader than force analysis, but limited in scope to translational motions. Conservation
of energy, on the other hand, is all inclusive kind of analysis framework as we can write energy conservation
for both pure and impure motion types, involving translation and rotation. Theoretically, however, energy
conservation is limited at nuclear or sub-atomic level or at high speed translation as mass and energy
becomes indistinguishable. These exceptional limits of energy conservation can, however, be overcome simply
by substituting energy conservation by an equivalent "mass-energy" conservation law. In this context,
conservation of angular momentum is as general as "mass-energy" conservation law to the extent that it is
valid at extreme bounds of sub-atomic, nuclear and high speed motions.

Exercise 1 (Solution on p. 12.)

What is conserved in the uniform circular motion of a particle?
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Uniform circular motion

Figure 1: A particle executing uniform circular motion.

(a) speed of the particle

(b) velocity of the particle

(c) linear momentum of the particle

(d) angular momentum of the particle

1 Conservation of angular momentum

An aggregate of objects may have combination of motions. Some of the subjects may be translating, others
rotating and remaining may be undergoing a mix of motions. Conservation of angular momentum encom-
passes to analyze such complexities in motion. The generality of the conservation law is actually the reason
why angular momentum has been de�ned about a point against an axis. This provides �exibility to combine
all motion types. Had the angular quantities been de�ned only about an axis, then it would not have been
possible to associate di�erent types of motions with angular momentum. For example, it would have been
di�cult to apply law of conservation of angular momentum for randomly moving particles as shown in the
�gure below.
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System of particles

Figure 2: Particles move randomly or may rotate about an axis.

Conservation of angular momentum, like conservation of linear momentum and energy, is fundamental
to the nature and laws governing it. It is more fundamental than classical laws as it holds where Newton's
law breaks down. It holds at sub-atomic level and also in the realm of motion, when it nears the speed of
light.

We have studied that the time rate of change of angular momentum of a system of particles is equal
to net external torque on the system. This is what is known as Newton's second law in angular form for
a system of particles. It, then, follows that the angular momentum of the system will be conserved, if net
external torque on the system is zero. Though, there is no external torque on the system, the particles
inside the system may still be subjected to forces (torques) and, therefore, may undergo multiple change in
velocity (angular velocity). Evidently, we can analyze resulting motions of the system with the help of the
conservation of angular momentum.

There are many ways or forms in which this law can be stated. Mathematically,

t net = 0

⇒ t net = dL
dt = 0

⇒ dL = 0

From these result, we can state conservation of angular momentum in following equivalent ways :
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De�nition 1: Conservation of angular momentum
If net external torque on a system is zero, then the angular momentum of the system can not
change.

⇒ ∆ L = 0 (1)

De�nition 2: Conservation of angular momentum
If net external torque on a system is zero, then the angular momentum of the system remains
same.

⇒ Li = Lf (2)

Application of conservation of angular momentum is required to be made under the circumstance of zero
torque. This condition, however, does not imply that net force on the system is zero. The two conditions
are di�erent. There may be net external force on the system, but the torque on it may be zero. This is the
case, when net external force acts through center of mass of the system of particles or the rigid body or their
combination.

2 Conservation of angular momentum in component form

Application of the law of conservation of angular momentum is not as straight forward as it may appear.
Theoretically, though, it is possible to conceive or de�ne a system such that there is no external torque, but
in real time situation it is not advisable to adjust the system to reduce net external torque to zero. If we
also consider the fact that we have to consider angular momentums of all objects within the system about
certain points and/or axes, then we realize that it is not actually possible to apply this law in most of the
real time situation - unless when we have some complex algorithm with a powerful computer at our disposal.

However, there is the fact that motions along mutually perpendicular axes are independent of each other.
This is an experimental fact, which has been described in detail in the module titled Projectile motion1.
This independence is a characteristic feature of motion and comes to our rescue in analyzing motion of an
isolated system in the context of conservation of angular momentum.

The angular momentum is a vector quantity having direction as well. As such, we can express conservation
of angular momentum along three mutually perpendicular axes of a rectangular coordinate system.

Lxi = Lxf , whentx = 0

Lyi = Lyf , whenty = 0

Lzi = Lzf , whentz = 0

(3)

Looking at the above formulations, we realize that application of conservation law in three mutually
perpendicular directions is a powerful paradigm. Even if external torque is not zero on a system, it is
likely and possible that net component of external torques in a particular direction is zero. The component
form of the conservation law allows us to apply conservation in that particular direction, irrespective of
consideration in other mutually perpendicular directions. This is a great improvisation as far as application
of the conservation of angular momentum is concerned. We, therefore, can state the component form of the
law :

De�nition 3: Conservation of angular momentum in component form
If the net component of external torques on a system along a certain direction is zero, then the
component of angular momentum of the system in that direction can not change.

1"Projectile motion": Section Analysis of projectile motion <http://cnx.org/content/m13837/latest/#section-2>

http://cnx.org/content/m14342/1.9/



Connexions module: m14342 5

3 Conservation of angular momentum for isolated body system about a common

axis

Isolated body system is a special case of general conservation law of angular momentum. It may occur to us
that the rotational description can very well be analyzed in terms of Newton's second law. Why do we need
to consider such eventuality for conservation of angular momentum? As pointed out early in this module,
there are situations of rigid bodies, which are capable to change their mass distribution and it would be very
di�cult to analyze motion in terms Newton's second law of motion. Conservation law, on the other hand,
can elegantly provide the solution.

Humans are one such body. We can change our body con�guration by manipulating arms and legs. This
is what dancers, skaters and spring board divers do. They change their body con�guration, while in motion.
This changes their moment of inertia about the axis of rotation. However as there is no external torque
involved, there is corresponding change in their angular velocity to conserve angular momentum of the body
system.

There is yet another situation, when conservation of angular momentum for body system can be helpful
in analyzing motion. We can consider multiple parts of the body system which may selectively undergo
rotation about a common axis of rotation. For example, motions of two discs along a common spindle can
be analyzed by considering conservation of angular momentum of the isolated body system.

System of two disks

Figure 3: The disks rotate about a common axis.

The statement of conservation of angular momentum for isolated body system can take advantage of the
relation valid for the rigid body. Here,

Li = Lf

Iiωi = Ifωf (4)

We must, however, always keep in our mind that this form of conservation law is valid only for the rigid
body for which angular momentum is measured about an axis.

http://cnx.org/content/m14342/1.9/
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4 Examples

We have all along emphasized the general nature of angular momentum. But when we think about examples
of real world, which can be analyzed with the help of this conservation law - we realize that most of them
are actually the rotational cases. This, however, does no reduce the importance of generality. The physical
examples for general motion require complex analysis tool beyond the scope of this course and hence are not
considered.

Here, some examples of rotational motion are given to illustrate conservation of angular momentum.
1: The revolution of planets around Sun
The planets like Earth move around Sun along an elliptical orbit. The gravitational pull provides the

necessary centripetal force for the curved elliptical path of motion. This gravitational force, however, passes
through center of mass of the Earth and the Sun. As such, it does not constitute a torque. Thus, no external
torque is applied to the Earth - Sun system. We can, therefore, apply conservation of angular momentum
to the system.

Earth revolving around Sun

Figure 4: The Earth moves around Sun in an elliptical path.

When the Earth comes closer to the Sun, the moment of inertia of the Earth about an axis through the
center of mass of the Sun decreases. In order to conserve its angular momentum, it begins to orbit the Sun
faster. Similarly, the Earth rotates slower when it is away from the Sun. All through Earth's revolution,
following condition is met :

Iiωi = Ifωf

We should note here that we are considering rotation of the Earth about the Sun - not the rotation of
Earth about its own axis of rotation. If we recall Kepler's law, we can see the convergence of results. This
law states that the line joining Sun and Earth sweeps equal area in equal time and, thereby predicts greater
tangential velocity (in turn, greater angular velocity), when closer to the Sun.

2: A person sitting on a turn table

http://cnx.org/content/m14342/1.9/
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A person sitting on a turn table can manipulate angular speed by changing moment of inertia about
the axis of rotation without any external aid. In order to accentuate the e�ect, we consider that person is
holding some weights in his outstretched hands. Let us consider that the system of the turntable and the
person holding weights in the outstretched hands, is rotating about vertical axis at certain angular velocity
in the beginning. The moment of inertia of the body and weights about the axis of rotation is :

A person sitting on a turn table

(a) (b)

Figure 5: (a) The person with extended arms (b) The person with folded arms

I =
∑

miri
2

When the person folds his hands slowly, the moment of inertia about the axis decreases as the distribution
of mass is closer to the axis of rotation. In order to conserve angular momentum, the turn table and person
starts rotating at greater angular velocity.

ωf > ωi

3: Ice skater
An ice skater rotates with outstretched hands on one leg. When he/she folds the hands and two legs

closer to the axis of rotation, the moment of inertia of the body decreases. As a consequence, ice skater
begins to spin at much greater angular velocity.

4: Spring board jumper
The spring board jumper follows a parabolic path of a projectile. In this case, the motion is about an

accelerated axis of rotation, which moves along the parabolic path. In the beginning, the jumper keeps hands
and legs stretched. During the �ight, he/she curls the body to decrease moment of inertia. This results in
increased angular velocity i.e. more turns before the jumper hits the water.

http://cnx.org/content/m14342/1.9/



Connexions module: m14342 8

Spring board jumping

Figure 6: The jumper follows a parabolic path under gravity.

When the spring board jumper nears the water surface, he/she stretches hands and legs so that he/she
she has straight line posture ensuring minimum splash while hitting water surface.

5 Measurement of angular momentum

For applying conservation of angular momentum, we measure angular momentums in the context of some
events like change in the distribution of mass, angular velocity etc. that arises from internal forces (torques).

The fundamental aspect of measurement of angular momentum is that its measurement should be about
the same reference before and after the event. This is the basic requirement for applying law of conservation
of angular momentum. We know that measurements of angular momentums about di�erent points are
di�erent. Hence, we should stick to same set of points for measuring angular momentum so that the single
value property of this physical quantity could be maintained.

If the axis of rotation (for the case of rotation) changes direction, then we should consider conservation
in terms of the components of angular momentum about mutually perpendicular axes of rotation. Since
angular momentum is a vector quantity, we can always �nd its component in the reference direction.

http://cnx.org/content/m14342/1.9/



Connexions module: m14342 9

Rotation about an axis changing orientation

Figure 7: We measure the component of angular momentum about the same .

The measurement of angular momentum of a system, however, could involve complexity for the following
two reasons :

1. The system may have constituents involving both rotation and translation.
2. There may be more than one axes of rotations.

As far as rotation is concerned, we deal it about an axis of rotation. There is no ambiguity involved here.
What about translation? The measurement of angular momentum for non-rotational motion is about a point
in the plane of motion of the particle or the particle like body. Usually, we would prefer (not required) that
the point is on the axis of rotation, if the particle interacts with a rotating part of the system.

If a system consists of bodies rotating about di�erent axes, then we should stick to the same axes for
subsequent (after case) time for calculating angular momentum. As per the requirement of problem, we may,
then, combine angular momentums, using vector addition to �nd the net or resultant angular momentum.
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System with more than one axes of rotation

Figure 8: The combined system rotates about �z� axis, whereas smaller disk rotates about parallel �z� '
axis.

All these aspects of measurement of angular momentum are illustrated with detailed explanation in the
next module titled " Conservation of angular momentum (application) 2".

6 Summary

1. Law of conservation of angular momentum
De�nition : If there is no external torque on a system, then the angular momentum of the system can

not change.
In general,

Li = Lf

For rotation,

Iiωi = Ifωf

The rotational form of conservation law is suited for rotation of rigid body that changes its mass distri-
bution due to internal forces or where constituent parts of the system change their angular velocities.

2. Law of conservation of angular momentum in component form
De�nition : If the net component of external torques on a system along a certain direction is zero, then

the component of angular momentum of the system in that direction can not change.
If �x�,�y� and �z� represent three mutually perpendicular axes, then :

2"Conservation of angular momentum (application)" <http://cnx.org/content/m14360/latest/>
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Lxi = Lxf , whentx = 0

Lyi = Lyf , whenty = 0

Lzi = Lzf , whentz = 0

By corollary, component form of conservation law means that consideration of angular momentum in a
given direction is not a�ected by torques in directions perpendicular to that direction.
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Solutions to Exercises in this Module

Solution to Exercise (p. 1)
The uniform circular motion is characterized by constant speed. Hence, speed is conserved.

The particle continuously changes direction. Hence, velocity is not conserved.
The particle would move along a straight line if there is no external force. However, the particle changes

direction. It means that there is an external force on the particle. This force is called centripetal force.
As there is an external force on the particle, linear momentum (mv) is not conserved. We can also simply
conclude the same saying that since velocity is not conserved, the linear momentum of the particle (mv) is
not conserved.

The particle has constant angular velocity (ω) and constant moment of inertia (I) about the axis of
rotation. Hence, angular momentum (Iω) is conserved. We can look at the situation in yet another way.
The only external force involved here is centripetal force, which is radial and passes through the axis of
rotation of the particle. Thus, there is no external torque ( τ ) on the particle. As such, angular momentum
of the particle is conserved.

Hence, options (a) and (d) are correct.
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