OpenStax-CNX module: m14766 1

ESSENTIAL PROGRAMMING STRUCTURES
IN LABVIEW"

Ed Doering

This work is produced by OpenStax-CNX and licensed under the
Creative Commons Attribution License 2.0f

Abstract

Learn how to work with LabVIEW’s essential programming structures such as for-loops, while-loops,
case structure, MathScript node, and diagram disable.

1 Overview

Signal processing applications developed in LabVIEW make frequent use of basic constructs that are common
to all high-level programming languages: for-loops, while-loops, and case structures. A For Loop repeats
a block of code a fixed number of times, a While Loop repeats a block of code as long as a particular
condition is true, and a Case Structure executes one of several blocks of code depending on some selection
criterion. After completing this module you will be able to use these three essential structures in your own
LabVIEW VIs.

You will also learn about two additional structures. The MathScript Node provides a way for you
to develop a customized node whose behavior is defined using the MathScript text-based programming
language. MathScript syntax and functions are quite similar to MATLAB, so the MathScript node can
help you to leverage any MATLAB programming experience you may have. Lastly, the Diagram Disable
structure is useful when you need to temporarily “comment out” a portion of your LabVIEW code.

The following diagram highlights the structures on the “Programming | Structures” palette about which
you will learn in this module:

*Version 1.6: Jan 5, 2010 4:57 pm -0600
Thttp://creativecommons.org/licenses,/by/2.0/

http://cnx.org/content/m14766,/1.6/

OpenStax-CNX module: m14766

o=IHIFuRCians (], search I
Prograrmming g
|m—|' |mT|?f | ||E| |'| |
- o=HlStructures
Strucktures \
R .
B Ll
Murneric For Loop Wehile Loop Timed Strocku., .
abc » o i] Ll
m T
Skring fructure Event Sktrocture MathScripk

]
=
=
=
=]

= E
A

Dialog & User.,. Flat Seguence Stacked Sequ... Formula Mode

iy]

Synchronization Diagram Disa... Conditional 0i.., Feedback Mods

B

1

|

Measurement I/ e oL
Instrument IjO

Vision and Motior Shared Yariable Local Wariable Global Wariable
Mathematics D\“\'

Signal Processing O]
Decorations

Daka Communica

Conneckivity

Conktrol Design & Sirmulation
SignalExpress

Express

Addons

Liser Libraries

Select a vl

DSP Firsk 3

T ¥ ¥ v ¥y v

Figure 1: Structures on the "Programming | Structures" palette described in this module

http://cnx.org/content/m14766,/1.6/

OpenStax-CNX module: m14766 3

2 For-Loop Structure
2.1 Basic concepts

The For Loop structure provides a means to repeatedly run a block of code (or subdiagram) for a fixed
number of times. The following screencast video introduces the For Loop structure, including concepts such
as loop count terminal, iterator, loop tunnel, indexing, shift register, and the feedback node.

Image not finished

Figure 2: [video] LabVIEW Techniques: For-Loop structure

2.2 Working with arrays as inputs

The For Loop structure works efficiently with arrays. The next screencast video describes how to work with
arrays that serve as inputs to the for-loop structure. Array elements can be used individually or collectively
within the for-loop, depending on whether you have enabled indexing on the loop tunnel. Indexing on the
output side of the for-loop can also be used to store a value (either a scalar or an array) on each iteration of
the for-loop, thereby producing an array as output. Arrays can also be concatenated, a standard technique
for constructing an audio signal from individual segments.

Image not finished

Figure 3: [video] LabVIEW Techniques: For-Loop structure with arrays as input

3 While-Loop Structure

The While Loop structure is similar to the For Loop structure with its ability to repeatedly run a
subdiagram, but the number of times is not fixed in advance. Instead, the while-loop structure will execute
its subdiagram as long as a particular condition is true. The following screencast will show you how to use
the While Loop structure.

Image not finished

Figure 4: [video] LabVIEW Techniques: While-Loop structure

http://cnx.org/content/m14766,/1.6/

OpenStax-CNX module: m14766 4

4 Case Structure

The Case Structure provides a mechanism by which exactly one of several possible subdiagrams will be
executed, depending on the value connected to the selector terminal. When the selector terminal is
a Boolean type (either True or False), the case structure implements the “if-else” construct of text-based
languages. When the selector terminal is an integer type, the case structure implements the “case” or “switch”
construct of text-based languages.

The following screencast introduces you to the Case Structure. You will learn how to add and delete
subdiagrams, how to choose the default subdiagram, and how to ensure that valid outputs are generated for
all possible cases. The Boolean and integer data types are covered in this screencast; the next screencast
describes how to work with the string and enumerated data types, which provide a user-friendly way to
select cases from the front panel.

Image not finished

Figure 5: [video] LabVIEW Techniques: Case Structure with "Boolean" and "integer" data types at
the selector terminal

Image not finished

Figure 6: [video] LabVIEW Techniques: Case Structure with "string" and "enumerated" data types
at the selector terminal

5 MathScript Node

The MathScript Node offers a convenient way to implement a programming concept that may be otherwise
difficult to implement using standard G code (i.e., creating LabVIEW block diagrams by wiring available
structures and nodes). MathScript is a text-based programming language that uses syntax very similar to
MATLAB. If you have prior experience with MATLAB, you can easily develop and debug a MathScript-
based script in the MathScript interactive window, then copy the text into a MathScript node on your
block diagram. After you create input and output terminals on the MathScript node, it can be connected
to the rest of the block diagram as you would any other structure.

The following screencast video introduces you to the MathScript Node. The example walks you
through the process to create a specialized node that accepts a scalar N as input and produces a specialized
array as output.

http://cnx.org/content/m14766,/1.6/

OpenStax-CNX module: m14766

Image not finished

Figure 7: [video] LabVIEW Techniques: MathScript node and MathScript Interactive Window

% Create a triangle array
x = [linspace(0,1,N/2) linspace(1,0,N/2)]
The screencast in this section (just above) walks through creation of a LabVIEW VI that includes a Math

YCreate a triangle array

¥ = [linspace(, 1,N/2) linspace(1,0,M/2)]

Figure 8: The screencast in this section (just above) describes how to build a VI that includes a
MathScript node.

6 Diagram-Disable Structure

You probably have used the software debugging technique known as “commenting out” a block of code; you
do this so that you can effectively remove a portion of code without actually deleting it from the file. Watch
the next screencast video to learn how to use the Diagram Disable structure to “comment out” a portion

of your LabVIEW block diagram.

Image not finished

Figure 9: [video] LabVIEW Techniques: Use Diagram-Disable structure to "comment out" a section

of code

http://cnx.org/content/m14766,/1.6/

