
Connexions module: m15054 1

[mini-project] Create standard
MIDI files with LabVIEW∗

Ed Doering

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

In this project you will create your own LabVIEW application that can produce a standard MIDI
�le. You will �rst develop a library of utility subVIs that produce the various components of the �le
(header chunk, track chunks, MIDI messages, meta-events, and delta times), as well as a subVI to write
the �nished binary �le. You will then combine these into a a top-level VI (application) that creates a
complete MIDI �le based on an algorithm of your choosing.

1 Required Background

If you have not done so already, please study the pre-requisite modules, MIDI Messages1 and Standard MIDI
Files2. You will need to refer to both of these modules in order to complete this activity. Also, you will �nd
it helpful to have already worked through the mini-project MIDI File Parsing3.

2 Introduction

In this project you will create your own LabVIEW application that can produce a standard MIDI �le. You
will �rst develop a library of six subVIs that can be combined into a top-level VI that operates just like
MIDI_UpDown.vi below (click the �Run� button (right-pointing arrow) to create the MIDI �le, then
double-click on the MIDI �le to hear it played by your soundcard):

This is an unsupported media type. To view, please see
http://cnx.org/content/m15054/latest/MIDI_UpDown.llb

MIDI_UpDown.vi produces a two-track MIDI �le, with one track an ascending chromatic scale and
the other a descending chromatic scale. You can select the voice for each track by choosing a tone number
in the range 1 to 128. You can also select the duration of each note (�on time�) and space between the notes
(�o� time�).

∗Version 1.2: Mar 17, 2008 9:25 pm -0500
†http://creativecommons.org/licenses/by/2.0/
1"MIDI Messages" <http://cnx.org/content/m15049/latest/>
2"Standard MIDI Files" <http://cnx.org/content/m15051/latest/>
3"[mini-project] Parse and analyze a standard MIDI �le" <http://cnx.org/content/m15052/latest/>

http://cnx.org/content/m15054/1.2/

Connexions module: m15054 2

Remember,MIDI_UpDown.vi is simply a demonstration of a top-level VI constructed from the subVIs
that you will make. Once you have constructed your library of subVIs, you will be able to use them in a
wide array of projects; here are some ideas:

• simulated wind chime: with an appropriate voice selection (see the General MIDI Level 1 Sound Set4

to choose a bell-like sound) and random number generator for delta times
• bouncing ping-pong ball: write a mathematical formula to model the time between bounces and the

intensity of bounces
• custom ring-tone generator for a cell phone

These are just a few ideas � be creative! Remember to take advantage of your ability to control the sound
type, note-on velocity, pitch bend, etc.

3 Tour of the Top-Level Block Diagram

Click the image below to take a quick tour of the top-level block diagram of MIDI_UpDown.vi. The role
of each subVI will be discussed in some detail, and you will have a better idea of the design requirements
for each of the subVIs you will create.

Figure 1: [video] Tour of the top-level block diagram of MIDI_UpDown.vi

4 SubVI Library

You will create six subVIs in this part of the project. Develop them in the exact order presented!
Also, make sure you test and debug each subVI before moving on to the next. Many of the concepts and
techniques you learn at the beginning carry forward to the more sophisticated subVIs you develop toward
the end.

The requirements for the subVIs are detailed in the following sections. Input Requirements specify
the name of the front panel control, its data type, and default value, if needed). Output Requirements
are similar, but refer to the front panel indicators. Behavior Requirements describe in broad terms the
nature of the block diagram you need to design and build.

An interactive front panel is provided for each of the subVIs as an aid to your development and testing.
By running the subVI with test values, you can better understand the behavioral requirements. Also, you
can compare your �nished result with the �gold standard,� so to speak.

Screencast videos o�er coding tips relevant to each subVI. The videos assume that you are developing
the modules in the order presented.

All right, time to get to work!

note: The �le name convention adopted for this project will help you to better organize your work.
Use the pre�x �midi_� for the subVIs, and �MIDI_� for top-level applications that use the subVIs.
This way all related subVIs will be grouped together when you display the �les in the folder.

4http://www.midi.org/about-midi/gm/gm1sound.shtml

http://cnx.org/content/m15054/1.2/

Connexions module: m15054 3

5 midi_PutBytes.vi

midi_PutBytes.vi accepts a string and writes it to a �le. If the �le already exists, the user should be
prompted before overwriting the �le.

5.1 Input Requirements

• �le path (�le path type)
• string (string type)

5.2 Output Requirements

• error out (error cluster)

5.3 Behavior Requirements

• Create a new �le or replace an existing �le
• If replacing a �le, prompt the user beforehand to con�rm
• Write the string to the �le, then close the �le
• Connect the �le-related subVIs to error out

Your �nished subVI should behave like this one:

This is an unsupported media type. To view, please see
http://cnx.org/content/m15054/latest/midi_PutBytes.llb

5.4 Coding Tips

Watch the screencast video to learn how to use the built-in subVIs Open/Create/Replace File, Write
to Binary File, and Close File. Refer to the module Creating a subVI in LabVIEW5 to learn how to
create a subVI.

Figure 2: [video] Learn how to write a string to a binary �le

6 midi_AttachHeader.vi

Once all of the track strings have been created, midi_AttachHeader.vi will attach a header chunk to the
beginning of the string to make a complete string prior to writing to a �le. The header chunk requires the
MIDI �le type, number of tracks, and division (ticks per quarter note).

5"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

http://cnx.org/content/m15054/1.2/

Connexions module: m15054 4

6.1 Input Requirements

• string in (string type)
• type (16-bit unsigned integer type; defaults to 1)
• number of tracks (16-bit unsigned integer type; defaults to 1)
• ticks per qnote (16-bit unsigned integer type; defaults to 120)

6.2 Output Requirements

• string out (string type)

6.3 Behavior Requirements

• Create a header chunk ID sub-string (MThd)
• Create a sub-string for chunk length (always 0x00_00_00_06)
• Create sub-strings for the three unsigned integers applied as inputs
• Assemble the sub-strings into a string in order as chunk ID, chunk length, type, number of tracks, and

division
• Append the inbound string to the header and output this result

Your �nished subVI should behave like this one:

This is an unsupported media type. To view, please see
http://cnx.org/content/m15054/latest/midi_AttachHeader.llb

6.4 Coding Tips

Watch the screencast video to learn how to use the Concatenate Strings node to join substrings together
into a single string. You will also learn how use the nodes To Variant and Variant to Flattened String
to convert a numerical value into its representation as a sequence of bytes in a string.

Figure 3: [video] Learn how to concatenate strings and convert numerical values to a sequence of bytes

7 midi_FinishTrack.vi

Once all of the delta-time/event pairs have been assembled into a string, midi_FinishTrack.vi will attach
a track chunk header to the beginning of the string and append an end-of-track meta-event at the end of the
string. The resulting string will represent a complete track chunk.

http://cnx.org/content/m15054/1.2/

Connexions module: m15054 5

7.1 Input Requirements

• string in (string type)
• delta-time / event pairs (string type)

7.2 Output Requirements

• string out (string type)

7.3 Behavior Requirements

• Create a track chunk ID sub-string (MTrk)
• Create a sub-string for a zero delta-time followed by an end-of-track meta-event
• Determine the total number of bytes in the track, and create a four-byte substring that represents this

value
• Assemble the sub-strings into a string in order as chunk ID, chunk length, inbound string, and zero

delta-time, and end-of-track meta-event, and output this result

Your �nished subVI should behave like this one:

This is an unsupported media type. To view, please see
http://cnx.org/content/m15054/latest/midi_FinishTrack.llb

7.4 Coding Tips

Watch the screencast video to learn how to use the nodes String Length and To Unsigned Long Integer
to determine the number of bytes in the track.

Figure 4: [video] Learn how to determine the length of string

8 midi_ToVLF.vi

midi_ToVLF.vi accepts a 32-bit unsigned integer and produces an output string that is anywhere from
one to four bytes in length (recall that VLF = variable length format). You may �nd this subVI to be one of
the more challenging to implement! Review the module Standard MIDI Files6 to learn about variable-length
format.

8.1 Input Requirements

• x (32-bit unsigned integer)
• string in (string type)

6"Standard MIDI Files" <http://cnx.org/content/m15051/latest/>

http://cnx.org/content/m15054/1.2/

Connexions module: m15054 6

8.2 Output Requirements

• string out (string type)

8.3 Behavior Requirements

• Accept a numerical value to be converted into a sub-string one to four bytes in length in variable-length
format

• Append the sub-string to the inbound string, and output the result

Your �nished subVI should behave like this one:

This is an unsupported media type. To view, please see
http://cnx.org/content/m15054/latest/midi_ToVLF.llb

8.4 Coding Tips

Watch the screencast video to learn how to convert a numerical value to and from the Boolean Array data
type, an easy way to work with values at the bit level.

Figure 5: [video] Learn how to convert a numerical value to a Boolean array in order to work at the
individual bit level

9 midi_MakeDtEvent.vi

midi_MakeDtEvent.vi creates a delta-time / event pair. The subVI accepts a delta-time in ticks, a
MIDI message selector, the channel number, and two data values for the MIDI message. The delta-time
is converted into variable-length format, and the (typically) three-byte MIDI message is created. Both of
these values are appended to the inbound string to produce the output string. Review the module MIDI
Messages7 to learn more.

9.1 Input Requirements

• string in (string type)
• delta time (32-bit unsigned integer; defaults to 0)
• event (enumerated data type with values Note O�, Note On, Control Change, Program Change, Pitch

Wheel; defaults to Note O�)
• channel (8-bit unsigned integer; defaults to 1)
• data 1 (8-bit unsigned integer; defaults to 0)
• data 2 (8-bit unsigned integer; defaults to 0)

7"MIDI Messages" <http://cnx.org/content/m15049/latest/>

http://cnx.org/content/m15054/1.2/

Connexions module: m15054 7

9.2 Output Requirements

• string out (string type)

9.3 Behavior Requirements

• Convert the delta time value to VLF format using the midi_ToVLF.vi subVI you created in a
previous step

• Subtract 1 from the inbound channel number (this way you can refer to channel numbers by their
standard numbers (in the range 1 to 16) outside the subVI.

• Create a MIDI message status byte using the channel number and event selector
• Finish the MIDI message by appending the appropriate byte values; depending on the MIDI message

you need to create, you may use both `data 1' and `data 2', or just `data 1' (Program Change message),
or you may need to modify the incoming data value slightly (for example, outside the subVI it is more
convenient to refer to the tone number for a Program Change message as a value between 1 and 128)

• Append the delta-time sub-string and the MIDI message sub-string to the inbound string, and output
the result

Your �nished subVI should behave like this one:

This is an unsupported media type. To view, please see
http://cnx.org/content/m15054/latest/midi_MakeDtEvent.llb

9.4 Coding Tips

Watch the screencast video to learn how to assemble a byte at the bit level, and also how to set up the
enumerated data type for a case structure.

Figure 6: [video] Learn how to assemble a byte at the bit level, and learn how to set up an enumerated
data type for a case structure

10 midi_MakeDtMetaEvent.vi

midi_MakeDtMeta.vi creates a delta-time / meta-event pair. The subVI accepts a delta-time in ticks,
a meta-event selector, text string, and tempo value (only certain meta-events require the last two inputs).
The delta-time is converted into variable-length format, and the meta-event is created. Both of these values
are appended to the inbound string to produce the output string. Review the module Standard MIDI Files8

to learn about meta-events.

8"Standard MIDI Files" <http://cnx.org/content/m15051/latest/>

http://cnx.org/content/m15054/1.2/

Connexions module: m15054 8

10.1 Input Requirements

• string in (string type)
• delta time (32-bit unsigned integer; defaults to 0)
• event (enumerated data type with values Text, Copyright Notice Text, Track Name, Instrument Name,

Lyric Text, Marker Text, Cue Point Text, Sequencer-Speci�c, End of Track, and Set Tempo; defaults
to Track Name)

• text (string type)
• tempo (32-bit unsigned integer; defaults to 500,000)

10.2 Output Requirements

• string out (string type)

10.3 Behavior Requirements

• Convert the delta time value to VLF format using the midi_ToVLF.vi subVI you created in a
previous step

• Create a meta-event sub-string using the sequence 0xFF (indicates meta-event), meta-event type (refer
to a table of meta-event type numbers), meta-event length (use midi_ToVLF.vi for this purpose),
and meta-event data.

• Append the delta-time sub-string and the MIDI message sub-string to the inbound string, and output
the result

Your �nished subVI should behave like this one:

This is an unsupported media type. To view, please see
http://cnx.org/content/m15054/latest/midi_MakeDtMetaEvent.llb

10.4 Coding Tips

At this point you should have enough experience to proceed without assistance!

11 Top-Level VI Application

Congratulations! You now have assembled and tested six subVIs that can form the basis of many other
projects. Now use your subVIs to build an application VI (top-level VI) to demonstrate that your subVIs
work properly together. Two applications that you can easily build are described next.

11.1 Sweep Through Notes and Tones

The application block diagram pictured below produces a single-track MIDI �le containing an ascending
chromatic sweep over the entire range of note numbers (0 to 127). Before sounding the note, the Program
Number (tone or voice selection) is set to the same value as the note number. Thus, the voice changes for
each note, adding additional interest to the sound. The note duration is speci�ed by a control whose unit is
milliseconds. As an exercise, you will need to complete the grayed-out area to convert the units of �duration�
from milliseconds to ticks.

http://cnx.org/content/m15054/1.2/

Connexions module: m15054 9

Figure 7: Block diagram to produce a single-track MIDI �le containing an ascending chromatic sweep
over the entire range of note numbers (0 to 127)

11.2 Measure the Velocity Pro�le of Your Soundcard

The application block diagram pictured below creates a MIDI �le in which the same note is played repeatedly,
but the velocity varies from the maximum to the minimum value in unit steps. When you play the MIDI �le,
you can record the soundcard's audio output and measure its velocity pro�le, i.e., the mapping between
the note's velocity value and its waveform amplitude. The Audacity9 sound editing application works well
for this purpose; choose �Wave Out Mix� as the input device to record the soundcard's output.

9http://audacity.sourceforge.net/

http://cnx.org/content/m15054/1.2/

Connexions module: m15054 10

Figure 8: Block diagram to play a single note with velocity varied from 127 down to 0

http://cnx.org/content/m15054/1.2/

