Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Musical Signal Processing with LabVIEW -- Modulation Synthesis » [ mini-project ] Ring Modulation and Pitch Shifting

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • IEEE-SPS display tagshide tags

    This module is included inLens: IEEE Signal Processing Society Lens
    By: IEEE Signal Processing SocietyAs a part of collection: "Musical Signal Processing with LabVIEW (All Modules)"

    Comments:

    "A multimedia educational resource for signal processing students and faculty."

    Click the "IEEE-SPS" link to see all content they endorse.

    Click the tag icon tag icon to display tags associated with this content.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • NSF Partnership display tagshide tags

    This module is included inLens: NSF Partnership in Signal Processing
    By: Sidney BurrusAs a part of collection: "Musical Signal Processing with LabVIEW (All Modules)"

    Click the "NSF Partnership" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • National Instruments display tagshide tags

    This module is included in aLens by: National InstrumentsAs a part of collection: "Musical Signal Processing with LabVIEW (All Modules)"

    Comments:

    "Developed by Rose Hulman Prof Ed Doering, this collection is a multimedia educational resource for students and faculty that augments traditional DSP courses and courses that cover music […]"

    Click the "National Instruments" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Lens for Engineering

    This module is included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

  • NI Signal Processing display tagshide tags

    This module is included inLens: Digital Signal Processing with NI LabVIEW and the National Instruments Platform
    By: Sam ShearmanAs a part of collection: "Musical Signal Processing with LabVIEW (All Modules)"

    Comments:

    "This online course covers signal processing concepts using music and audio to keep the subject relevant and interesting. Written by Prof. Ed Doering from the Rose-Hulman Institute of Technology, […]"

    Click the "NI Signal Processing" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

[ mini-project ] Ring Modulation and Pitch Shifting

Module by: Ed Doering. E-mail the authorEdited By: Erik Luther, Sam Shearman

Summary: Create a LabVIEW VI to experiment with ring modulation (also called amplitude modulation, or AM), and develop a LabVIEW VI to shift the pitch of a speech signal using the single-sideband modulation technique.

Table 1
LabVIEWq.png This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
• Apply LabVIEW to Audio Signal Processing
• Get started with LabVIEW
• Obtain a fully-functional evaluation edition of LabVIEW

Overview

Ring modulation (AM) is an audio special effect that produces two frequency-shifted replicas of the spectrum of a source signal, with one replica shifted to higher frequency and the other replica to a lower frequency. Single-sideband AM (SSB-AM) provides a way to shift the source signal's spectrum higher or lower but without the additional replica. SSB-AM provides one way to implement a pitch shifter, an audio special effect that shifts the frequency of speech, singing, or a musical instrument to a higher or lower frequency.

In this project, use LabVIEW to implement several types of ring modulators and a pitch shifter.

Prerequisite Modules

If you have not done so already, please study the prerequisite modules AM Mathematics and Pitch Shifting. If you are relatively new to LabVIEW, consider taking the course LabVIEW Techniques for Audio Signal Processing which provides the foundation you need to complete this mini-project activity, including working with arrays, creating subVIs, playing an array to the soundcard, and saving an array as a .wav sound file.

Deliverables

  • All LabVIEW code that you develop (block diagrams and front panels)
  • All generated sounds in .wav format
  • Any plots or diagrams requested
  • Summary write-up of your results

Part 1: Multiple Modulators

Consider an original signal x(t) x(t) , which is a sinusoid of frequency f 0 f 0 . The original signal is modulated by a cosine function of frequency f 0 /2 f 0 /2 to produce x 1 (t) x 1 (t) , which is in turn modulated by a cosine function of frequency f 0 /5 f 0 /5 to produce x 2 (t) x 2 (t) , which is in turn modulated by a cosine function of frequency f 0 /9 f 0 /9 to produce x 3 (t) x 3 (t) . Sketch the frequency-domain version of the four signals, i.e., sketch X(f) X(f) , X 1 (f) X 1 (f) , X 2 (f) X 2 (f) , and X 3 (f) X 3 (f) .

Create a LabVIEW implementation of the above arrangement and plot the spectrum of each of the four signals. Compare your LabVIEW results to your prediction.

Part 2: Multiple Modulators with Soundfile Input

Create a LabVIEW implementation of the multiple modulation scheme of Part 1 that can process a .wav audio file as the input signal. Use controls for the three modulators that will allow you to easily change their modulation frequencies. Experiment with various choices of modulation frequencies to make an interesting effect. Create two .wav files using different parameter choices.

Part 3: Pitch Shifter

LabVIEW.png Implement the pitch shifting algorithm based on the single-sideband AM technique discussed in Pitch Shifter with Single-Sideband AM. Use a design similar to that of "am_demo3.vi" provided at the bottom of the page of AM Mathematics which accepts a .wav file as input and plays the sound. The sound clip should be relatively short (on the order of several seconds). For this part of the project, do not implement the pre-filter; you will do this in Part 4.

Evaluate the quality of your pitch shifter by presenting some written discussion and suitable spectrogram plots. Especially indicate whether you can find audible and visual evidence of aliasing.

The fast Hilbert transform built-in subVI is available in the "Signal Processing | Transforms" pallet.

Part 4: Pitch Shifter with Anti-Aliasing Filter

Modify your pitch shifter to include a bandpass filter. State how you will compute the bandpass filter's upper and lower corner frequencies, given that you want to preserve as much of the original signal's bandwidth as possible.

Evaluate the quality of your modified pitch shifter by presenting some written discussion and suitable spectral plots. Compare your results with those you obtained in Part 3.

A variety of digital filters are available in the "Signal Processing | Filters" pallet.

Optional Part 5: Real-Time Processor

Choose one of the previous LabVIEW implementations and make it work in real time with a signal input (microphone) and interactive front-panel controls.

LabVIEW.png Evaluate the interrupt-driven approach using an event structure (see "am_demo1.vi" described in AM Mathematics, as well as the polled approach used by mic_in_speaker_out.vi). Use whichever technique you prefer.

Submit your finished LabVIEW implementation as a distinct .zip file.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks