Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » Principles of Digital Communications » Mitigation to Combat Frequency-Selective Distortion

Navigation

Table of Contents

Recently Viewed

This feature requires Javascript to be enabled.
 

Mitigation to Combat Frequency-Selective Distortion

Module by: Sinh Nguyen-Le, Tuan Do-Hong. E-mail the authorsEdited By: Sinh Nguyen-Le, Tuan Do-HongTranslated By: Sinh Nguyen-Le, Tuan Do-Hong

Equalization can mitigate the effects of channel-induced ISI brought on by frequency-selective fading. It can help modify system performance described by the curve that is “awful” to the one that is merely “bad.” The process of equalizing for mitigating ISI effects involves using methods to gather the dispersed symbol energy back into its original time interval.

An equalizer is an inverse filter of the channel. If the channel is frequency selective, the equalizer enhances the frequency components with small amplitudes and attenuates those with large amplitudes. The goal is for the combination of channel and equalizer filter to provide a flat composite-received frequency response and linear phase.

Because the channel response varies with time, the equalizer filters must be adaptive equalizers.

The decision feedback equalizer (DFE) involves:

1) a feedforward section that is a linear transversal filter whose stage length and tap weights are selected to coherently combine virtually all of the current symbol’s energy.

2) a feedback section that removes energy remaining from previously detected symbols.

The basic idea behind the DFE is that once an information symbol has been detected, the ISI that it induces on future symbols can be estimated and subtracted before the detection of subsequent symbols.

A maximum-likelihood sequence estimation (MLSE) equalizer: tests all possible data sequences and chooses the data sequence that is the most probable of all the candidates. The MLSE is optimal in the sense that it minimizes the probability of a sequence error. Since the MLSE equalizer is implemented by using Viterbi decoding algorithm, it is often referred to as the Viterbi equalizer.

Direct-sequence spread-spectrum (DS/SS) techniques can be used to mitigate frequency-selective ISI distortion because the hallmark of spread-spectrum systems is their capability of rejecting interference, and ISI is a type of interference.

Consider a DS/SS binary phase-shift keying (PSK) communication channel comprising one direct path and one reflected path. Assume that the propagation from transmitter to receiver results in a multipath wave that is delayed by ττ size 12{τ} {} compared to the direct wave. The received signal, r(t)r(t) size 12{r \( t \) } {}, neglecting noise, can be expressed as follows:

r ( t ) = Ax ( t ) g ( t ) cos ( 2πf c t ) + α Ax ( t τ ) g ( t τ ) cos ( 2πf c t + θ ) r ( t ) = Ax ( t ) g ( t ) cos ( 2πf c t ) + α Ax ( t τ ) g ( t τ ) cos ( 2πf c t + θ ) size 12{r \( t \) = ital "Ax" \( t \) g \( t \) "cos" \( 2πf rSub { size 8{c} } t \) +α ital "Ax" \( t - τ \) g \( t - τ \) "cos" \( 2πf rSub { size 8{c} } t+θ \) } {}

where x(t)x(t) size 12{x \( t \) } {} is the data signal, g(t)g(t) size 12{g \( t \) } {} is the pseudonoise (PN) spreading code, and ττ size 12{τ} {} is the differential time delay between the two paths. The angle θθ size 12{θ} {} is a random phase, assumed to be uniformly distributed in the range (0,)(0,) size 12{ \( 0, 2π \) } {}, and αα size 12{α} {} is the attenuation of the multipath signal relative to the direct path signal.

The receiver multiplies the incoming r(t)r(t) size 12{r \( t \) } {} by the code g(t)g(t) size 12{g \( t \) } {}. If the receiver is synchronized to the direct path signal, multiplication by the code signal yields the following:

r ( t ) g ( t ) = Ax ( t ) g 2 ( t ) cos ( 2πf c t ) + α Ax ( t τ ) g ( t ) g ( t τ ) cos ( 2πf c t + θ ) r ( t ) g ( t ) = Ax ( t ) g 2 ( t ) cos ( 2πf c t ) + α Ax ( t τ ) g ( t ) g ( t τ ) cos ( 2πf c t + θ ) size 12{r \( t \) g \( t \) = ital "Ax" \( t \) g rSup { size 8{2} } \( t \) "cos" \( 2πf rSub { size 8{c} } t \) +α ital "Ax" \( t - τ \) g \( t \) g \( t - τ \) "cos" \( 2πf rSub { size 8{c} } t+θ \) } {}

where g2(t)=1g2(t)=1 size 12{g rSup { size 8{2} } \( t \) =1} {}. If ττ size 12{τ} {} is greater than the chip duration, then

g ( t ) g ( t τ ) dt g 2 ( t ) dt g ( t ) g ( t τ ) dt g 2 ( t ) dt size 12{ lline Int {g \( t \) g \( t - τ \) ital "dt"} rline <= lline Int {g rSup { size 8{2} } \( t \) ital "dt"} rline } {}

over some appropriate interval of integration (correlation). Thus, the spread spectrum system effectively eliminates the multipath interference by virtue of its code-correlation receiver. Even though channel-induced ISI is typically transparent to DS/SS systems, such systems suffer from the loss in energy contained in the multipath components rejected by the receiver. The need to gather this lost energy belonging to a received chip was the motivation for developing the Rake receiver.

A channel that is classified as flat fading can occasionally exhibit frequency-selective distortion when the null of the channel’s frequency-transfer function occurs at the center of the signal band. The use of DS/SS is a practical way of mitigating such distortion because the wideband SS signal can span many lobes of the selectively faded channel frequency response. This requires the spread-spectrum bandwidth WssWss size 12{W rSub { size 8{ ital "ss"} } } {} (or the chip rate RchRch size 12{R rSub { size 8{ ital "ch"} } } {}), to be greater than the coherence bandwidth f0f0 size 12{f rSub { size 8{0} } } {}. The larger the ratio of WssWss size 12{W rSub { size 8{ ital "ss"} } } {} to f0f0 size 12{f rSub { size 8{0} } } {}, the more effective will be the mitigation.

Frequency-hopping spread-spectrum (FH/SS): can be used to mitigate the distortion caused by frequency-selective fading, provided that the hopping rate is at least equal to the symbol rate. FH receivers avoid the degradation effects due to multipath by rapidly changing in the transmitter carrier-frequency band, thus avoiding the interference by changing the receiver band position before the arrival of the multipath signal.

Orthogonal frequency-division multiplexing (OFDM): can be used for signal transmission in frequency-selective fading channels to avoid the use of an equalizer by lengthening the symbol duration. The approach is to partition (demultiplex) a high symbol-rate sequence into NN size 12{N} {} symbol groups, so that each group contains a sequence of a lower symbol rate (by the factor 1/N1/N size 12{ {1} slash {N} } {}) than the original sequence. The signal band is made up of NN size 12{N} {} orthogonal carrier waves, and each one is modulated by a different symbol group. The goal is to reduce the symbol rate (signaling rate), W1/TsW1/Ts size 12{W approx {1} slash {T rSub { size 8{s} } } } {}, on each carrier to be less than the channel’s coherence bandwidth f0f0 size 12{f rSub { size 8{0} } } {}.

Pilot signal is the name given to a signal intended to facilitate the coherent detection of waveforms. Pilot signals can be implemented in the frequency domain as in-band tones, or in the time domain as digital sequences that can also provide information about the channel state and thus improve performance in fading conditions.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks