Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Fast Fourier Transforms » Introduction: Fast Fourier Transforms

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Rice Digital Scholarship

    This collection is included in aLens by: Digital Scholarship at Rice University

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

  • NSF Partnership display tagshide tags

    This collection is included inLens: NSF Partnership in Signal Processing
    By: Sidney Burrus

    Click the "NSF Partnership" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Featured Content display tagshide tags

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "The Fast Fourier Transform (FFT) is a landmark algorithm used in fields ranging from signal processing to high-performance computing. First popularized by two American scientists in 1965, the […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • UniqU content

    This collection is included inLens: UniqU's lens
    By: UniqU, LLC

    Click the "UniqU content" link to see all content selected in this lens.

  • Lens for Engineering

    This module and collection are included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
Download
x

Download collection as:

  • PDF
  • EPUB (what's this?)

    What is an EPUB file?

    EPUB is an electronic book format that can be read on a variety of mobile devices.

    Downloading to a reading device

    For detailed instructions on how to download this content's EPUB to your specific device, click the "(what's this?)" link.

  • More downloads ...

Download module as:

  • PDF
  • EPUB (what's this?)

    What is an EPUB file?

    EPUB is an electronic book format that can be read on a variety of mobile devices.

    Downloading to a reading device

    For detailed instructions on how to download this content's EPUB to your specific device, click the "(what's this?)" link.

  • More downloads ...
Reuse / Edit
x

Collection:

Module:

Add to a lens
x

Add collection to:

Add module to:

Add to Favorites
x

Add collection to:

Add module to:

 

Introduction: Fast Fourier Transforms

Module by: C. Sidney Burrus. E-mail the author

The development of fast algorithms usually consists of using special properties of the algorithm of interest to remove redundant or unnecessary operations of a direct implementation. Because of the periodicity, symmetries, and orthogonality of the basis functions and the special relationship with convolution, the discrete Fourier transform (DFT) has enormous capacity for improvement of its arithmetic efficiency.

There are four main approaches to formulating efficient DFT [1] algorithms. The first two break a DFT into multiple shorter ones. This is done in Multidimensional Index Mapping by using an index map and in Polynomial Description of Signals by polynomial reduction. The third is Factoring the Signal Processing Operators which factors the DFT operator (matrix) into sparse factors. The DFT as Convolution or Filtering develops a method which converts a prime-length DFT into cyclic convolution. Still another approach is interesting where, for certain cases, the evaluation of the DFT can be posed recursively as evaluating a DFT in terms of two half-length DFTs which are each in turn evaluated by a quarter-length DFT and so on.

The very important computational complexity theorems of Winograd are stated and briefly discussed in Winograd's Short DFT Algorithms. The specific details and evaluations of the Cooley-Tukey FFT and Split-Radix FFT are given in The Cooley-Tukey Fast Fourier Transform Algorithm, and PFA and WFTA are covered in The Prime Factor and Winograd Fourier Transform Algorithms. A short discussion of high speed convolution is given in Convolution Algorithms, both for its own importance, and its theoretical connection to the DFT. We also present the chirp, Goertzel, QFT, NTT, SR-FFT, Approx FFT, Autogen, and programs to implement some of these.

Ivan Selesnick gives a short introduction in Winograd's Short DFT Algorithms to using Winograd's techniques to give a highly structured development of short prime length FFTs and describes a program that will automaticlly write these programs. Markus Pueschel presents his ``Algebraic Signal Processing" in DFT and FFT: An Algebraic View on describing the various FFT algorithms. And Steven Johnson describes the FFTW (Fastest Fourier Transform in the West) in Implementing FFTs in Practice

The organization of the book represents the various approaches to understanding the FFT and to obtaining efficient computer programs. It also shows the intimate relationship between theory and implementation that can be used to real advantage. The disparity in material devoted to the various approaches represent the tastes of this author, not any intrinsic differences in value.

A fairly long list of references is given but it is impossible to be truly complete. I have referenced the work that I have used and that I am aware of. The collection of computer programs is also somewhat idiosyncratic. They are in Matlab and Fortran because that is what I have used over the years. They also are written primarily for their educational value although some are quite efficient. There is excellent content in the Connexions book by Doug Jones [2].

References

  1. Burrus, C. S. (1988). Efficient Fourier Transform and Convolution Algorithms. In Lim, J. S. and Oppenheim, A. V. (Eds.), Advanced Topics in Signal Processing. (p. 199–245). Englewood Cliffs, NJ: Prentice-Hall.
  2. Jones, Douglas L. (2007, February). The DFT, FFT, and Practical Spectral Analysis. [http://cnx.org/content/col10281/1.2/]. Connexions.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Reuse / Edit:

Reuse or edit collection (?)

Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.

| Reuse or edit module (?)

Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.