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1 Other work and Results

This section comes from a note describing results on e�cient algorithms to calculate the discrete Fourier
transform (DFT) that were collected over years. Perhaps the most interesting is the discovery that the
Cooley-Tukey FFT was described by Gauss in 1805 [45]. That gives some indication of the age of research
on the topic, and the fact that a 1995 compiled bibliography [95] on e�cient algorithms contains over 3400
entries indicates its volume. Three IEEE Press reprint books contain papers on the FFT [69], [21], [22]. An
excellent general purpose FFT program has been described in [34], [33] and is used in Matlab and available
over the internet.

In addition to this book there are several others [59], [65], [7], [43], [107], [64], [8], [10], [86] that give
a good modern theoretical background for the FFT, one book [14] that gives the basic theory plus both
FORTRAN and TMS 320 assembly language programs, and other books [56], [89], [16] that contain chapters
on advanced FFT topics. A good up-to-date, on-line reference with both theory and programming techniques
is in [3]. The history of the FFT is outlined in [23], [45] and excellent survey articles can be found in [30],
[25]. The foundation of much of the modern work on e�cient algorithms was done by S. Winograd. These
results can be found in [116], [117], [118]. An outline and discussion of his theorems can be found in [56] as
well as [59], [65], [7], [43].

E�cient FFT algorithms for length-2M were described by Gauss and discovered in modern times by
Cooley and Tukey [24]. These have been highly developed and good examples of FORTRAN programs can
be found in [14]. Several new algorithms have been published that require the least known amount of total
arithmetic [119], [27], [26], [58], [112], [17]. Of these, the split-radix FFT [27], [26], [111], [98] seems to
have the best structure for programming, and an e�cient program has been written [91] to implement it. A
mixture of decimation-in-time and decimation-in-frequency with very good e�ciency is given in [77], [78] and
one called the Sine-Cosine FT [17]. Recently a modi�cation to the split-radix algorithm has been described
[54] that has a slightly better total arithmetic count. Theoretical bounds on the number of multiplications
required for the FFT based on Winograd's theories are given in [43], [44]. Schemes for calculating an in-place,
in-order radix-2 FFT are given in [4], [5], [51], [105]. Discussion of various forms of unscramblers is given in
[12], [76], [48], [31], [75], [114], [120], [100], [73]. A discussion of the relation of the computer architecture,
algorithm and compiler can be found in [63], [61]. A modi�cation to allow lengths of N = q 2m for q odd is
given in [6].

The �other� FFT is the prime factor algorithm (PFA) which uses an index map originally developed by
Thomas and by Good. The theory of the PFA was derived in [55] and further developed and an e�cient
in-order and in-place program given in [13], [14]. More results on the PFA are given in [103], [104], [105],
[106], [96]. A method has been developed to use dynamic programming to design optimal FFT programs
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that minimize the number of additions and data transfers as well as multiplications [50]. This new approach
designs custom algorithms for a particular computer architecture. An e�cient and practical development
of Winograd's ideas has given a design method that does not require the rather di�cult Chinese remainder
theorem [56], [52] for short prime length FFT's. These ideas have been used to design modules of length 11,
13, 17, 19, and 25 [49]. Other methods for designing short DFT's can be found in [102], [57]. A use of these
ideas with distributed arithmetic and table look-up rather than multiplication is given in [20]. A program
that implements the nested Winograd Fourier transform algorithm (WFTA) is given in [59] but it has not
proven as fast or as versatile as the PFA [13]. An interesting use of the PFA was announced [18] in searching
for large prime numbers.

These e�cient algorithms can not only be used on DFT's but on other transforms with a similar structure.
They have been applied to the discrete Hartley transform [92], [9] and the discrete cosine transform [112],
[115], [72].

The fast Hartley transform has been proposed as a superior method for real data analysis but that has
been shown not to be the case. A well-designed real-data FFT [93] is always as good as or better than
a well-designed Hartley transform [92], [29], [68], [109], [101]. The Bruun algorithm [11], [99] also looks
promising for real data applications as does the Rader-Brenner algorithm [71], [19], [109]. A novel approach
to calculating the inverse DFT is given in [28].

General length algorithms include [84], [36], [32]. For lengths that are not highly composite or prime, the
chirp z-transform in a good candidate [14], [70] for longer lengths and an e�cient order-N2 algorithm called
the QFT [85], [39], [40] for shorter lengths. A method which automatically generates near-optimal prime
length Winograd based programs has been given in [52], [79], [80], [81], [82]. This gives the same e�ciency
for shorter lengths (i.e. N ≤ 19) and new algorithms for much longer lengths and with well-structured
algorithms. Another approach is given in [66]. Special methods are available for very long lengths [46], [97].
A very interesting general length FFT system called the FFTW has been developed by Frigo and Johnson at
MIT. It uses a library of e�cient �codelets" which are composed for a very e�cient calculation of the DFT
on a wide variety of computers [34], [33], [35]. For most lengths and on most computers, this is the fastest
FFT today. Surprisingly, it uses a recursive program structure. The FFTW won the 1999 Wilkinson Prize
for Numerical Software.

The use of the FFT to calculate discrete convolution was one of its earliest uses. Although the more
direct rectangular transform [2] would seem to be more e�cient, use of the FFT or PFA is still probably the
fastest method on a general purpose computer or DSP chip [67], [93], [29], [60]. On special purpose hardware
or special architectures, the use of distributed arithmetic [20] or number theoretic transforms [1] may be even
faster. Special algorithms for use with the short-time Fourier transform [87] and for the calculation of a few
DFT values [90], [74], [88] and for recursive implementation [113], [33] have also been developed. An excellent
analysis of e�cient programming the FFT on DSP microprocessors is given in [62], [61]. Formulations of
the DFT in terms of tensor or Kronecker products look promising for developing algorithms for parallel and
vector computer architectures [94], [107], [53], [110], [108], [38], [37].

Various approaches to calculating approximate DFTs have been based on cordic methods, short word
lengths, or some form of pruning. A new method that uses the characteristics of the signals being transformed
has combined the discrete wavelet transform (DWT) combined with the DFT to give an approximate FFT
with O (N) multiplications [41], [42], [15] for certain signal classes. A similar approach has been developed
using �lter banks [83], [47].

The study of e�cient algorithms not only has a long history and large bibliography, it is still an exciting
research �eld where new results are used in practical applications.

More information can be found on the Rice DSP Group's web page1

1http://www-dsp.rice.edu
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