Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Stoichiometry » Molal concentration

Navigation

Recently Viewed

This feature requires Javascript to be enabled.
 

Molal concentration

Module by: Sunil Kumar Singh. E-mail the author

Molality (m) is also a measurement of molar concentration like molarity (M). We have seen that molarity(M) is a convenient measurement of the concentration of solution as it allows us to directly compute moles of solute present in the solution. There is, however, a problem in reporting concentration of a solution in terms of molarity. Recall that it is equal to numbers of moles of solute divided by volume of solution in litres. The molar ratio has volume of the solution in the denominator. This means that molarity(M) of a given solution will change with temperature as volume of solution will change with temperature. This is a major handicap as reported concentration needs to be reliable and constant anywhere irrespective of temperature. In this backdrop, molality(m) is measurement of concentration aiming to remove this shortcoming associated with measurement in molarity (M).

Molality(m) also differs to other measurements in yet another important aspect. It involves the ratio of measurement of solute and solvent – not that of solute and solution. This difference is important to be kept in mind while computing quantities and converting measurement units from one to another.

The major objective of this module is to develop skills to convert measurement of concentration from one measurement type to another.

Molality of a solution with respect to solute is defined as :

Molality(m) = Moles of solute (B) Mass of solvent (A) in Kg Molality(m) = Moles of solute (B) Mass of solvent (A) in Kg

m = n B w Akg m = n B w Akg

Its unit is moles/ kg. In case we consider mass of solvent in gm, then the expression of molality is given as :

m = n B g A X 1000 = Milli-moles of B g A m = n B g A X 1000 = Milli-moles of B g A

If mass of solvent of a solution of known molality is known, then number of moles of solute is obtained as :

Moles of solute, B = Molality X Mass of solvent in kg Moles of solute, B = Molality X Mass of solvent in kg

Similarly,

Milli-moles of B = Molality X Mass of solvent (A) in gm Milli-moles of B = Molality X Mass of solvent (A) in gm

Example 1

Problem : 11.7 gm of sodium chloride is dissolved in 400 ml of water. Find molality of the solution.

Solution : Here,

Moles of sodium chloride = 11.7 23 + 35.5 = 11.7 58.5 = 0.2 Moles of sodium chloride = 11.7 23 + 35.5 = 11.7 58.5 = 0.2

Mass of the solvent = 400 X 1 = 400 g m = 0.4 k g Mass of the solvent = 400 X 1 = 400 g m = 0.4 k g

Molality, m = 0.2 0.4 = 0.5 m Molality, m = 0.2 0.4 = 0.5 m

Molality in terms of molarity and density of solution

Molality and Molarity are linked to each other through density of solution. Beginning with the definition of molarity, a solution of molarity “M” means that 1 litre of solution contains “M” moles of solute. If the density of the solution is “d” in gm/cc, then

Mass of 1 litre solution in gm = 1000 d Mass of 1 litre solution in gm = 1000 d

Mass of the solute in gm in 1 litre solution = nos of moles X molecular weight = M M O Mass of the solute in gm in 1 litre solution = nos of moles X molecular weight = M M O

Mass of the solvent in gm in 1 litre solution = 1000 d M M O Mass of the solvent in gm in 1 litre solution = 1000 d M M O

We need to calculate mass of solvent in kg to calculate molality(m) :

Mass of the solvent in kg in 1 litre solution = 1000 d M M O / 1000 Mass of the solvent in kg in 1 litre solution = 1000 d M M O / 1000

Hence, molality,

m = n B W Akg = M 1000 d M M O 1000 = 1000 M 1000 d M M O m = n B W Akg = M 1000 d M M O 1000 = 1000 M 1000 d M M O

We should note that "density of solution (d)" and "strength of solution (S)" differ. Density of solution (d) is ratio of mass of solution (solute + solvent) in gm and volume of solution in cc. It has the unit of gm/cc. On the other hand, strength of solution (S) is ratio of mass of solute in gm and volume of solution in litre. It has the unit of gm/litre.

Example 2

Problem : The density of 3M sodium thiosulphate (Na2S2O3) solution is 1.25 gm/cc. Calculate molality of Na + Na + and S 2 O 3 S 2 O 3 ions.

Solution : We can use the formula to calculate molality of the sodium thiosulphate :

m = 1000 M 1000 d M M O = 1000 X 3 1000 X 1.25 3 X 2 X 23 + 2 X 32 + 3 X 16 m = 1000 M 1000 d M M O = 1000 X 3 1000 X 1.25 3 X 2 X 23 + 2 X 32 + 3 X 16

m = 3000 1250 474 = 3000 776 = 3.866 m = 3000 1250 474 = 3000 776 = 3.866

Alternatively, we can proceed with the basic consideration in place of using formula Since molarity of solution is 3M, it means that 1 litre of solution contains 3 moles of sodium thiosulphate. We can use density to find the mass of the 1 litre solvent.

Mass of solution = 1000 X 1.25 = 1250 g m Mass of solution = 1000 X 1.25 = 1250 g m

Mass of 3 moles of sodium thiosulphate = 3 M N a 2 S 2 O 3 = 3 X 2 X 23 + 2 X 32 + 3 X 16 Mass of 3 moles of sodium thiosulphate = 3 M N a 2 S 2 O 3 = 3 X 2 X 23 + 2 X 32 + 3 X 16

Mass of 3 moles of sodium thiosulphate = 3 X 46 + 64 + 48 = 3 X 158 = 474 g m Mass of 3 moles of sodium thiosulphate = 3 X 46 + 64 + 48 = 3 X 158 = 474 g m

Mass of solvent = 1250 474 = 776 g m = 0.776 k g Mass of solvent = 1250 474 = 776 g m = 0.776 k g

Molality of sodium thiosulphate = 3 0.776 = 3.866 m Molality of sodium thiosulphate = 3 0.776 = 3.866 m

We are, however, required to calculate molality of ions. We see that one mole is equivalent to 2 moles of sodium ion and 1 mole of thiosulphate ion :

Na 2 S 2 O 3 = 2 N a + + S 2 O 3 Na 2 S 2 O 3 = 2 N a + + S 2 O 3

Hence,

Molality of Na + = 2 X 3.866 = 7.732 m Molality of Na + = 2 X 3.866 = 7.732 m

Molality of S 2 O 3 = 3.866 m Molality of S 2 O 3 = 3.866 m

Density of solution in terms of molarity and molality

Working on the relation of molality developed in previous section :

m = 1000 M 1000 d M M O m = 1000 M 1000 d M M O

1 m = 1000 d M M O 1000 M = d M M O 1000 1 m = 1000 d M M O 1000 M = d M M O 1000

d = M 1 m + M O 1000 d = M 1 m + M O 1000

Example 3

Problem : The molality and molarity of a solution of sulphuric acid are 90 and 10 respectively Determine density of the solution.

Solution : Using relation :

d = M 1 m + M O 1000 d = M 1 m + M O 1000

d = 10 1 90 + 98 1000 = 10 X 0.011 + 0.98 = 10 X 0.991 = 9.91 g m / c c d = 10 1 90 + 98 1000 = 10 X 0.011 + 0.98 = 10 X 0.991 = 9.91 g m / c c

Molality in terms of density of solution and strength of solution

We need to know the moles of solute and mass of solvent in kg to determine molality. Now, strength of solution (S) is equal to mass of the solute in gm in 1 litre of solution. Hence,

Mass of the solute in gm in 1 litre of solution = S Mass of the solute in gm in 1 litre of solution = S

Moles of the solute = S M O Moles of the solute = S M O

Mass of 1 litre solution in gm = 1000 d Mass of 1 litre solution in gm = 1000 d

Mass of the solvent in gm in 1 litre of solution = 1000 d S Mass of the solvent in gm in 1 litre of solution = 1000 d S

Mass of the solvent in kg in 1 litre of solution = 1000 d S 1000 Mass of the solvent in kg in 1 litre of solution = 1000 d S 1000

The molality is :

m = n B W Akg = S M O 1000 d S 1000 = 1000 S M O 1000 d S m = n B W Akg = S M O 1000 d S 1000 = 1000 S M O 1000 d S

Example 4

Problem : A solution has 392 gm of sulphuric acid per litre of solution. If the density of the solution is 1.25 gm/cc, find molality of the solution.

Solution : Using relation :

m = 1000 S M O 1000 d S = 1000 X 392 98 X 1000 X 1.25 392 = 4.73 m m = 1000 S M O 1000 d S = 1000 X 392 98 X 1000 X 1.25 392 = 4.73 m

Molality in terms of mole fraction and molecular weight

Molality is defined as :

m = n B W A k g = n B g A X 1000 = n B n A M A X 1000 m = n B W A k g = n B g A X 1000 = n B n A M A X 1000

n B = m n A M A 1000 n B = m n A M A 1000

On the other hand, mole fraction with respect to solute B is given by :

χ B = n B n A + n B χ B = n B n A + n B

Substituting for nA, we have :

χ B = m n A M A 1000 n A + m n A M A 1000 = m M A 1000 + m M A χ B = m n A M A 1000 n A + m n A M A 1000 = m M A 1000 + m M A

1000 χ B + m M A χ B = m M A 1000 χ B + m M A χ B = m M A

m M A 1 χ B = 1000 χ B m M A 1 χ B = 1000 χ B

m = 1000 χ B 1 χ B M A m = 1000 χ B 1 χ B M A

Similarly, we can express molality in terms of mole fraction with respect to solvent (A) as :

m = 1000 1 χ A χ A M A m = 1000 1 χ A χ A M A

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks