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Digital �lters with an In�nite-duration Impulse Response (IIR) have characteristics that make them
useful in many applications. This section develops and discusses the properties and characteristics of these
�lters[3].

Because of the feedback necessary in an implementation, the In�nite Impulse Response (IIR) �lter is
also called a recursive �lter or, sometimes, an autoregressive moving-average �lter (ARMA). In contrast
to the FIR �lter with a polynomial transfer function, the IIR �lter has a rational transfer function. The
transfer function being a ratio of polynomials means it has �nite poles as well as zeros, and the frequency-
domain design problem becomes a rational-function approximation problem in contrast to the polynomial
approximation for the FIR �lter[4]. This gives considerably more �exibility and power, but brings with it
certain problems in both design and implementation[3], [2], [1].

The de�ning relationship between the input and output variables for the IIR �lter is given by

y (n) =
N∑

k=1

a (k) y (n− k) +
M∑

m=0

b (m)x (n−m) . (1)

The second summation in (1) is exactly the same moving average of the present plus past M values of the
input that occurs in the de�nition of the FIR �lter. The di�erence arises from the �rst summation, which
is a weighted sum of the previous N output values. This is the feedback or recursive part which causes the
response to an impulse input theoretically to endure forever. The calculation of each output term y(n) from
(1) requires N +M + 1 multiplications and N +M additions. There are other algorithms or structures for
calculating y (n) that may require more or less arithmetic.

In addition to the number of calculations required to calculate each output term being a measure of
e�ciency, the amount of storage for coe�cients and intermediate calculations is important. DSP chips are
designed to e�ciently implement calculations such as (1) by having a single cycle operation that multiplies
a variable by a constant and accumulates it. In parallel with that operation, it is simultaneously calculating
the address of the next variable.

Just as in the case of the FIR �lter, the output of an IIR �lter can also be calculated by convolution.

y (n) =
∞∑

k=0

h (k)x (n− k) (2)

In this case, the duration of the impulse response h (n) is in�nite and, therefore, the number of terms in (2)
is in�nite. The N +M + 1 operations required in (1) are clearly preferable to the in�nite number required
by (2). This gives a hint as to why the IIR �lter is very e�cient. The details will become clear as the
characteristics of the IIR �lter are developed in this section.
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1 Frequency-Domain Formulation of IIR Filters

The transfer function of a �lter is de�ned as the ratio Y (z) /X (z), where Y (z) andX (z) are the z-transforms
of the output y (n) and input x (n), respectively. It is also the z-transform of the impulse response. Using
the de�nition of the z-transform in Equation 32 from Discrete-Time Signals1, the transfer function of the
IIR �lter de�ned in (1) is

H (z) =
∞∑

n=0

h (n) z−n (3)

This transfer function is also the ratio of the z-transforms of the a (n) and b (n) terms.

H (z) =
∑M

n=0 b (n) z−n∑N
n=0 a (n) z−n

=
B (z)
A (z)

(4)

The frequency response of the �lter is found by setting z = ejω, which gives (1) the form

H (ω) =
∞∑

n=0

h (n) e−jωn (5)

It should be recalled that this form assumes a sampling rate of T = 1. To simplify notation, H (ω) is used
to denote the frequency response rather than H

(
ejω
)
.

This frequency-response function is complex-valued and consists of a magnitude and phase. Even though
the impulse response is a function of the discrete variable n, the frequency response is a function of the
continuous-frequency variable ω and is periodic with period 2π.

Unlike the FIR �lter case, exactly linear phase is impossible for the IIR �lter. It has been shown that
linear phase is equivalent to symmetry of the impulse response. This is clearly impossible for the IIR �lter
with an impulse response that is zero for n < 0 and nonzero for n going to in�nity.

The FIR linear-phase �lter allowed removing the phase from the design process. The resulting problem
was a real-valued approximation problem requiring the solution of linear equations. The IIR �lter design
problem is more complicated. Linear phase is not possible, and the equations to be solved are generally
nonlinear. The most common technique is to approximate the magnitude of the transfer function and let
the phase take care of itself. If the phase is important, it becomes part of the approximation problem, which
then is often di�cult to solve.

2 Calculation of the IIR Filter Frequency Response

As shown in another module, L equally spaced samples of H (ω) can be approximately calculated by taking
an L-length DFT of h (n) given in (5). However, unlike for the FIR �lter, this requires that the in�nitely
long impulse response be truncated to at least length-L. A more satisfactory alternative is to use the DFT to
evaluate the numerator and denominator of (4) separately rather than to approximately evaluate (5). This
is accomplished by appending L − N zeros to the a (n) and L −M zeros to the b (n) from (1), and taking
length-L DFTs of both to give

H (2πk/L) =
DFT {b (n)}
DFT {a (n)}

(6)

where the division is a term-wise division of each of the L values of the DFTs as a function of k. This direct
method of calculation is a straightforward and �exible technique that does not involve truncation of h (n)
and the resulting error. Even nonuniform spacing of the frequency samples can be achieved by altering the
DFT as was suggested for the FIR �lter. Because IIR �lters are generally lower in order than FIR �lters,
direct use of the DFT is usually e�cient enough and use of the FFT is not necessary. Since the a (n) and

1"Discrete-Time Signals", (26) <http://cnx.org/content/m16881/latest/#uid76>
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b (n) do not generally have the symmetries of the FIR h (n), the DFTs cannot be made real and, therefore,
the shifting and stretching techniques of other modules are not applicable.

As an example, the frequency-response plot of a third-order elliptic-function lowpass �lter with a transfer
function of

H (z) =
0.1335z3 + 0.056z2 + 0.056z + 0.1335
z3 − 1.507z2 + 1.2646z − 0.3786

(7)

is given in Figure 1a. The details for designing this �lter are discussed in elsewhere. A similar performance
for the magnitude response would require a length of 18 for a linear-phase FIR �lter.
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Figure 1: Frequency Response and Pole-Zero Locations of a Third-Order IIR Filter

3 Pole-Zero Locations for IIR Filters

The possible locations of the zeros of the transfer function of an FIR linear-phase �lter were analyzed
elsewhere. For the IIR �lter, there are poles as well as zeros. For most applications, the coe�cients a (n)
and b (n) are real and, therefore, the poles and zeros occur in complex conjugate pairs or are real. A �lter
is stable if for any bounded input, the output is bounded. This implies the poles of the transfer function
must be strictly inside the unit circle of the complex z plane. Indeed, the possibility of an unstable �lter is
a serious problem in IIR �lter design, which does not exist for FIR �lters. An important characteristic of
any design procedure is the guarantee of stable designs, and an important ability in the analysis of a given
�lter is the determination of stability. For a linear �lter analysis, this involves the zeros of the denominator
polynomial of (4). The location of the zeros of the numerator, which are the zeros of H (z), are important
to the performance of the �lter, but have no e�ect on stability.

If both the poles and zeros of a transfer function are all inside or on the unit circle of the z-plane, the
�lter is called minimum phase. The e�ects of a pole or zero at a radius of r from the origin of the z-plane on
the magnitude of the transfer function are exactly the same as one at the same angle but at a radius of 1/r.
However, the e�ect on the phase characteristics is di�erent. Since only stable �lters are generally used in
practice, all the poles must be inside the unit circle. For a given magnitude response, there are two possible
locations for each zero that is not on the unit circle. The location that is inside gives the least phase shift,
hence the name �minimum- phase" �lter.
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The locations of the poles and zeros of the example in (7) are given in Figure 1b.
Since evaluating the frequency response of a transfer function is the same as evaluating H (z) around

the unit circle in the z-plane, a comparison of the frequency-response plot in Figure 1a and the pole-zero
locations in Figure 1b gives insight into the e�ects of pole and zero location on the frequency response. In
the case where it is desirable to reject certain bands of frequencies, zeros of the transfer function will be
located on the unit circle at locations corresponding to those frequencies.

By having both poles and zeros to describe an IIR �lter, much more can be done than in the FIR �lter case
where only zeros exist. Indeed, an FIR �lter is a special case of an IIR �lter with a zero-order denominator.
This generality and �exibility does not come without a price. The poles are more di�cult to realize than
the zeros, and the design is more complicated.

4 Summary

This section has given the basic de�nition of the IIR or recursive digital �lter and shown it to a generalization
of the FIR �lter described in the previous chapters. The feedback terms in the IIR �lter cause the transfer
function to be a rational function with poles as well as zeros. This feedback and the resulting poles of the
transfer function give a more versatile �lter requiring fewer coe�cients to be stored and less arithmetic.
Unfortunately, it also destroys the possibility of linear phase and introduces the possibility of instability and
greater sensitivity to the e�ects of quantization. The design methods, which are more complicated than for
the FIR �lter, are discussed in another section, and the implementation, which also is more complicated, is
discussed in still another section.
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