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For mathematical convenience, the four classical IIR �lter transfer functions were developed in terms
of the Laplace transform rather than the z-transform. The prototype Laplace-transform transfer functions
are descriptions of analog �lters. In this section they are converted to z-transform transfer functions for
implementation as IIR digital �lters.

There have been several di�erent methods of converting analog systems to digital described over the
history of digital �lters. Two have proven to be useful for most applications. The �rst is called the impulse-
invariant method and results in a digital �lter with an impulse response exactly equal to samples of the
prototype analog �lter. The second method uses a frequency mapping to convert the analog �lter to a
digital �lter. It has the desirable property of preserving the optimality of the four classical approximations
developed in the last section. This section will develop the theory and design formulas to implement both
of these conversion approaches.

1 The Impulse-Invariant Method

Although the transfer functions in Continuous Frequency De�nition of Error1 were designed with criteria in
the frequency domain, the impulse-invariant method will convert them into digital transfer functions using
a time-domain constraint [7], [5], [8]. The digital �lter designed by the impulse-invariant method is required
to have an impulse response that is exactly equal to equally spaced samples of the impulse response of the
prototype analog �lter. If the analog �lter has a transfer function F (s) with an impulse response f (t), the
impulse response of the digital �lter h (n) is required to match the samples of f (t). For samples at T second
intervals, the impulse response is

h (n) = F (T ) |t=Tn = F (Tn) (1)

The transfer function of the digital �lter is the z-transform of the impulse response of the �lter, which is
given by

H (z) =
∞∑
n=0

h (n) z−n (2)
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The transfer function of the prototype analog �lter is always a rational function written as

F (s) =
B (s)
A (s)

(3)

where B (s) is the numerator polynomial with roots that are the zeros of F (s), and A (s) is the denominator
with roots that are the poles of F (s). If F (s) is expanded in terms of partial fractions, it can be written as

F (s) =
N∑
i=1

Ki

s+ si
(4)

The impulse response of this �lter is the inverse-Laplace transform of (4), which is

f (t) =
N∑
i=1

K esit (5)

Sampling this impulse response every T seconds gives

f (nT ) =
N∑
i=1

Ki e
−sinT =

N∑
i=1

Ki

(
e−siT

)n
(6)

The basic requirement of (1) gives

H (z) =
∞∑
n=0

[
N∑
i=1

Ki

(
e−sIT

)n]
(7)

H (z) =
N∑
i=1

Kiz

z − esIT
(8)

which is clearly a rational function of z and is the transfer function of the digital �lter, which has samples
of the prototype analog �lter as its impulse response.

This method has its requirements set in the time domain, but the frequency response is important. In
most cases, the prototype analog �lter is one of the classical types, which is optimal in the frequency domain.
If the frequency response of the analog �lter is denoted by F (jω) and the frequency response of the digital
�lter designed by the impulse- invariant method is H (ω), it can be shown in a development similar to that
used for the sampling theorem

H (ω) = (1/T )
∞∑

k=−∞

F (j (ω − 2πk/T )) (9)

The frequency response of the digital �lter is a periodically repeated version of the frequency response of
the analog �lter. This results in an overlapping of the analog response, thus not preserving optimality in the
same sense the analog prototype was optimal. It is a similar phenomenon to the aliasing that occurs when
sampling a continuous-time signal to obtain a digital signal in A-to-D conversion. If F (jω) is an analog
lowpass �lter that goes to zero as ω goes to in�nity, the e�ects of the folding can be made small by high
sampling rates (small T).

The impulse-invariant design method can be summarized in the following steps:

1. Design a prototype analog �lter with transfer function F (jω).
2. Make a partial fraction expansion of F (jω) to obtain the N values for Ki and si.
3. Form the digital transfer function H (z) from (8) to give the desired design.

The characteristics of the designed �lter are the following:

http://cnx.org/content/m16908/1.2/
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• It has N poles, the same as the analog �lter.
• It is stable if the analog �lter was stable. This is seen from the change of variables in the denominator

of (6.70) which maps the left-half s-plane inside the unit circle in the z-plane.
• The frequency response is a folded version of the analog �lter, and the optimal properties of the analog

�lter are not preserved.
• The cascade of two impulse-invariant designed �lters are not impulse-invariant with the cascade of the

two analog prototypes. In other words, the �lter must be designed in one step.

This method is sometimes used to design digital �lters, but because the relation of the analog and digital
system is speci�ed in the time domain, it is more useful in designing a digital simulation of an analog system.
Unfortunately, the properties of this class of �lters depend on the input. If a �lter is designed so that its
impulse response is the sampled impulse response of the analog �lter, its step response will not be the
sampled step response of the analog �lter.

A step-invariant �lter can be designed by �rst multiplying the analog �lter transfer function F (s) by
1/s, which is the Laplace transform of a step function. This product is then expanded in partial fraction
just as F (s) was in (4) and the same substitution made as in (8) giving a z-transform. After the z-transform
of a step is removed, the digital �lter has the step-invariant property. This idea can be extended to other
input functions, but the impulse-invariant version is the most common. Another modi�cation to the impulse-
invariant method is known as the matched z transform covered in [7], but it is less useful.

There can be a problem with the classical impulse-invariant method when the number of �nite zeros is
too large. This is addressed in [3], [4].

An example of a Butterworth lowpass �lter used to design a digital �lter by the impulse-invariant method
can be shown. Note that the frequency response does not go to zero at the highest frequency of w = p. It
can be made as small as desired by increasing the sampling rate, but this is more expensive to implement.
Because the frequency response of the prototype analog �lter for an inverse-Chebyshev or elliptic-function
�lter does not necessarily go to zero as w goes to in�nity, the e�ects of folding on the digital frequency
response are poor. No amount of sampling rate increase will change this. The same problem exists for a
highpass �lter. This shows the care that must be exercised in using the impulse-invariant design method.

2 The Bilinear Transformation

A second method for converting an analog prototype �lter into a desired digital �lter is the bilinear transfor-
mation. This method is entirely a frequency-domain method, and as a result, some of the optimal properties
of the analog �lter are preserved. As was the case with the impulse-invariant method, the time interval is not
normalized to one, but is explicitly denoted by the sampling interval T with units of seconds. The bilinear
transformation is a change of variables (a mapping) that is linear in both the numerator and denominator
[7], [5], [2], [6]. The usual form is

s =
2
T

z − 1
z + 1

(10)

The z-transform transfer function of the digital �lter H (z) is obtained from the Laplace transform transfer
function F (s) of the prototype �lter by substituting for s the bilinear form of (10).

H (z) = F

(
2 (z − 1)
T (z + 1)

)
(11)

This operation can be reversed by solving (10) for z and substituting this into H (z) to obtain F (s). This
reverse operation is also bilinear of the form

z =
2/T + s

2/T − s
(12)
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To consider the frequency response, the Laplace variable s is evaluated on the imaginary axis and the
z-transform variable z is evaluated on the unit circle. This is achieved by

s = ju and z = ejωT (13)

which gives the relation of the analog frequency variable u to the digital frequency variable ω from (13) and
(10) to be

u = (2/T ) tan ((ωT ) /2) (14)

The bilinear transform maps the in�nite imaginary axis in the-s plane onto the unit circle in the z-plane.
It maps the in�nite interval of −∞ < u < ∞ of the analog frequency axis on to the �nite interval of
−π/2 < ω < π/2 of the digital frequency axis. This is illustrated in Figure 1.
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Figure 1: The Frequency Map of the Bilinear Transform

There is no folding or aliasing of the prototype frequency response, but there is a compression of the
frequency axis, which becomes extreme at high frequencies. This is shown in Figure 2 from the relation of
(14).
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Figure 2: The Frequency Mapping of the Bilinear Transform

Near zero frequency, the relation of u and ω is essentially linear. The compression increases as the digital
frequency w nears π/2. This nonlinear compression is called frequency warping. The conversion of F (s) to
H (z) with the bilinear transformation does not change the values of the frequency response, but it changes
the frequencies where the values occur.

In the design of a digital �lter, the e�ects of the frequency warping must be taken into account. The
prototype �lter frequency scale must be prewarped so that after the bilinear transform, the critical frequencies
are in the correct places. This prewarping or scaling of the prototype frequency scale is done by replacing s
with Ks. Because the bilinear transform is also a change of variables, both can be performed in one step if
that is desirable.

If the critical frequency for the prototype �lter is uo and the desired critical frequency for the digital
�lter is ωo, the two frequency responses are related by

F (ju0) = H (ω0) = F ∗ (15)

The prewarping scaling is given by

u0 =
2
T
tan

(
ω0T

2

)
(16)
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Combining the prewarping scale and the bilinear transformation give

u0 =
2K
T
tan

(
ω0T

2

)
(17)

Solving for K and combining with (10) give

s =
u0

tan (ω0T/2)
z − 1
z + 1

(18)

All of the optimal �lters developed in Continuous Frequency De�nition of Error2 and most other prototype
�lters are designed with a normalized critical frequency of u0 = 1. Recall that ω0 is in radians per second.
Most speci�cations are given in terms of frequency f in Hertz (cycles per second) which is related to ω or u
by

ω = 2πf (19)

Care must be taken with the elliptic-function �lter where there are two critical frequencies that determine
the transition region. Both frequencies must be prewarped.

The characteristics of the bilinear transform are the following:

• The order of the digital �lter is the same as the prototype �lter.
• The left-half s-plane is mapped into the unit circle on the z-plane. This means stability is preserved.
• Optimal approximations to piecewise constant prototype �lters, such as the four cases in Continuous

Frequency De�nition of Error3, transform into optimal digital �lters.
• The cascade of sections designed by the bilinear transform is the same as obtained by transforming the

total system.

The bilinear transform is probably the most used method of converting a prototype Laplace transform
transfer function into a digital transfer function. It is the one used in most popular �lter design programs
[1], because of characteristic 3 above that states optimality is preserved. The maximally �at prototype is
transformed into a maximally �at digital �lter. This property only holds for approximations to piecewise
constant ideal frequency responses, because the frequency warping does not change the shape of a constant.
If the prototype is an optimal approximation to a di�erentiator or to a linear-phase characteristic, the
bilinear transform will destroy the optimality. Those approximations have to be made directly in the digital
frequency domain.

Example 1: The Bilinear Transformation

To illustrate the bilinear transformation, the third-order Butterworth lowpass �lter designed in
the Example is converted into a digital �lter. The prototype �lter transfer function is

F (s) =
1

(s+ 1) (s2 + s+ 1)
(20)

The prototype analog �lter has a passband edge at u0 = 1. A data rate of 1000 samples per second
corresponding to T = 0.001 seconds is assumed. If the desired digital passband edge is f0 = 200
Hz, then ω0 = (2π) (200) radians per second, and the total prewarped bilinear transformation from
(18) is

s = 1.376382
z − 1
z + 1

(21)

2"Least Squared Error Design of FIR Filters": Section Continuous Frequency De�nition of Error
<http://cnx.org/content/m16892/latest/#uid28>

3"Least Squared Error Design of FIR Filters": Section Continuous Frequency De�nition of Error
<http://cnx.org/content/m16892/latest/#uid28>
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The digital transfer function in (20) becomes

H (z) =
0.09853116(z + 1)3

(z − 0.158384) (z2 − 0.418856z + 0.355447)
(22)

Note the locations of the poles and zeros in the z-plane. Zeros at in�nity in the s-plane always map
into the z = -1 point. The example illustrate a third-order elliptic-function �lter designed using the
bilinear transform.

3 Frequency Transformations

For the design of highpass, bandpass, and band reject �lters, a particularly powerful combination consists of
using the frequency transformations described in Section elsewhere together with the bilinear transformation.
When using this combination, some care must be taken in scaling the speci�cations properly. This is
illustrated by considering the steps in the design of a bandpass �lter:

1. First, the lower and upper digital bandedge frequencies are speci�ed as ω1 and or ω1, ω2, ω3, and ω4

if an elliptic-function approximation is used.
2. These frequencies are prewarped using (16) to give theband edges of the prototype bandpass analog

�lter.
3. These frequencies are converted into a single band- edge ωp or ωs for the Butterworth and Chebyshev

and into ωp and ωs for the elliptic-function approximation of the prototype lowpass �lter by using
Equation 2 from Frequency Transformations4 and Equation 4 from Frequency Transformations5.

4. The lowpass �lter is designed for this ωp and/or ωs by using one of the four approximations in the
sections in Continuous Frequency De�nition of Error6 or some other method.

5. This lowpass analog �lter is converted into a bandpass analog �lter with the frequency transformation
Equation 6 from Frequency Transformations7.

6. The bandpass analog �lter is then transformed into the desired bandpass digital �lter using the bilinear
transformation (10).

This is the procedure used in the design Program 8 in the appendix.
When designing a bandpass elliptic-function �lter, four frequencies must be speci�ed: the lower stopband

edge, the lower passband edge, the upper passband edge, and the upper stopband edge. All four must be
prewarped to the equivalent analog values. A problem occurs when the two transition bands of the bandpass
�lter are converted into the single transition band of the lowpass prototype �lter. In general they will be
inconsistant; therefore, the narrower of the two transition bands should be used to specify the lowpass �lter.
The same problem occurs in designing a bandreject elliptic-function �lter. Program 8 in the appendix should
be studied to understand how this is carried out.

An alternative to the process of converting a lowpass analog into a bandpass analog �lter which is then
converted into a digital �lter, is to �rst convert the prototype lowpass analog �lter into a lowpass digital
�lter and then make the conversion into a bandpass �lter. If the prototype digital �lter transfer function is
Hp (z) and the frequency transformation is f (z), the desired transformed digital �lter is described by

H (z) = Hp (f (z)) (23)

Since the frequency response of both H (z) and Hp (z) is obtained by evaluating them on the unit circle in
the-z plane, f (z) should map the unit circle onto the unit circle (|z| = 1 => |f (z) | = 1). Both H (z) and

4"Frequency Transformations", (2) <http://cnx.org/content/m16913/latest/#uid7>
5"Frequency Transformations", (4) <http://cnx.org/content/m16913/latest/#uid9>
6"Least Squared Error Design of FIR Filters": Section Continuous Frequency De�nition of Error

<http://cnx.org/content/m16892/latest/#uid28>
7"Frequency Transformations", (6) <http://cnx.org/content/m16913/latest/#uid11>
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Hp (z) should be stable; therefore, f (z) should map the interior of the unit circle into the interior of the unit
circle (|z| < 1 => |f (z) | < 1). If f (z) were viewed as a �lter, it would be an �all-pass" �lter with a unity
magnitude frequency response of the form

f (z) =
p (z)

znp (1/z)
=
anz

n + an−1z
n−1 + · · ·+ a0

a0zn + a1zn−1 + · · ·+ an
(24)

The prototype digital lowpass �lter is usually designed with bandedges at ±π/2. Determining the frequency
transformation then becomes the problem of solving the n+ 1 equations

f
(
ejωi

)
= e±jπ/2 = (−1)ij (25)

for the unknown ak where i = 0, 1, 2, · · ·n and the ωi are the bandedges of the desired transformed frequency
response put in ascending order. The resulting simultaneous equations have a special structure that allow a
recursive solution. Details of this approach can be found in [6].

This is an extremely general approach that allows multiple passbands of arbitrary width. If elliptic-
function approximations are used, only one of the transition bandwidths can be independently speci�ed. If
more than one passband or rejectband is desired, f(z) will be higher order than second order and, therefore,
the transformed transfer function H (f (z)) will have to be factored using a root �nder.

To illustrate the results of using transform methods to design �lters, three examples are given which are
designed with Program 8 from the appendix.

Example 2: Design of an Chebyshev Highpass Filter

The speci�cations are given for a highpass Chebyshev frequency response with a passband edge at
fp = 0.3 Hertz with a sampling rate of one sample per second. The order is set at N = 5 and the
passband ripple at 0.91515 dB. The transfer function is

H (z) =
(z − 1)

(
z2 − 2z + 1

) (
z2 − 2z + 1

)
(z + 0.64334) (z2 + 0.97495z + 0.55567) (z2 + 0.57327z + 0.83827)

(26)

The frequency response plot is given in Figure 3.
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Figure 3: Fifth Order Digital Chebyshev Highpass Filter

Example 3: Design of an Elliptic-Function Bandpass Filter

This �lter requires a bandpass frequency response with an elliptic-function approximation. The
maximum passpand ripple is one dB, the minimum stopband attenuation is 30 dB, the lower
stopband edge f1 = 0.19, the lower passband edge f2 = 0.2, the upper passband edge f3 = 0.3,
and the upper stopband edge f4 = 0.31 Hertz with a sampling rate of one sample per second. The
design program calculated a required prototype order of N = 6 and, therefore, a total order of 10.
The frequency response plot is shown in Figure 4.
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Figure 4: Tenth Order Digital Elliptic Bandpass Filter

Example 4: Design of an Inverse-Chebyshev Bandreject Filter

The speci�cations are given for a bandreject Inverse- Chebyshev frequency response with bandedges
at fs = 0.1 and 0.2 Hertz with a sampling rate of one sample per second. The order is set at N = 11
and the minimum stopband attenuation at 30 dB. The frequency response plot is given in Figure 5.
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Figure 5: Twenty second Order Digital Inverse Chebyshev Band Reject Filter

3.1 Summary

This section has described the two most popular and useful methods for transforming a prototype analog
�lter into a digital �lter. The analog frequency variable is used because a literature on analog �lter design
exists, but more importantly, many approximation theories are more straightforward in terms of the Laplace-
transform variable than the z-transform variable. The impulse-invariant method is particularly valuable
when time- domain characteristics are important. The bilinear-transform method is the most common
when frequency-domain performance is the main interest. Use of the BLT warps the frequency scale and,
therefore, the digital band edges must be prewarped to obtain the necessary band edges for the analog �lter
design. Formulas that transform the analog prototype �lters into the desired digital �lters and for prewarping
speci�cations were derived.

The use of frequency transformations to convert lowpass �lters into highpass, bandpass, and bandreject
�lters was discussed as a particularly useful combination with the bilinear transformation. These are imple-
mented in Program 8 and design examples from this program were shown.

There are cases where no analytic results are possible or where the desired frequency response is not
piecewise constant and transformation methods are not appropriate. Direct methods for these cases are
developed in other sections.
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