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1 Elliptic-Function Filter Properties

In this section, a design procedure is developed that uses a Chebyshev error criterion in both the passband
and the stopband. This is the fourth possible combination of Chebyshev and Taylor's series approximations in
the passband and stopband. The resulting �lter is called an elliptic-function �lter, because elliptic functions
are normally used to calculate the pole and zero locations. It is also sometimes called a Cauer �lter or a
rational Chebyshev �lter, and it has equal ripple approximation error in both pass and stopbands [6], [5],
[4], [7].

The error criteria of the elliptic-function �lter are particularly well suited to the way speci�cations for
�lters are often given. For that reason, use of the elliptic-function �lter design usually gives the lowest order
�lter of the four classical �lter design methods for a given set of speci�cations. Unfortunately, the design of
this �lter is the most complicated of the four. However, because of the e�ciency of this class of �lters, it is
worthwhile gaining some understanding of the mathematics behind the design procedure.

This section sketches an outline of the theory of elliptic- function �lter design. The details and properties
of the elliptic functions themselves should simply be accepted, and attention put on understanding the overall
picture. A more complete development is available in [6], [3]. Straightforward design of elliptic-function �lters
can be accomplished by skipping this section and going directly to Program 8 in the appendix or by using
Matlab. However, it is important to understand the basics of the underlying theory to use the packaged
design programs intelligently.

Because both the passband and stopband approximations are over the entire bands, a transition band
between the two must be de�ned. Using a normalized passband edge, the bands are de�ned by

0 < ω < 1 passband (1)

1 < ω < ωs transition band (2)

ωs < ω <∞ stopband (3)

This is illustrated in Figure 1.
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Figure 1: Third Order Analog Elliptic Function Lowpass Filter showing the Ripples and Band Edges

The characteristics of the elliptic function �lter are best described in terms of the four parameters that
specify the frequency response:

1. The maximum variation or ripple in the passband δ1,
2. The width of the transition band (ωs − 1),
3. The maximum response or ripple in the stopband δ2, and
4. The order of the �lter N .

The result of the design is that for any three of the parameters given, the fourth is minimum. This is a very
�exible and powerful description of a �lter frequency response.

The form of the frequency-response function is a generalization of that for the Chebyshev �lter

FF (jω) = |F (jω) |2 =
1

1 + ε2G2 (ω)
(4)

where

FF (s) = F (s)F (−s) (5)

http://cnx.org/content/m16925/1.2/
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with F (s) being the prototype analog �lter transfer function similar to that for the Chebyshev �lter. G (ω)
is a rational function that approximates zero in the passband and in�nity in the stopband. The de�nition
of this function is a generalization of the de�nition of the Chebyshev polynomial.

1.1 Elliptic Functions

In order to develop analytical expressions for equal-ripple rational functions, an interesting class of tran-
scendental functions, called the Jacobian elliptic functions, is outlined. These functions can be viewed as a
generalization of the normal trigonometric and hyperbolic functions. The elliptic integral of the �rst kind
[1] is de�ned as

u (φ, k) =
∫ φ

0

dy√
1− k2sin2 (y)

(6)

The trigonometric sine of the inverse of this function is de�ned as the Jacobian elliptic sine of u with
modulus k, and is denoted

sn (u, k) = sin (φ (u, k)) (7)

A special evaluation of (6) is known as the complete elliptic integral K = u (π/2, k). It can be shown [1]
that sn (u) and most of the other elliptic functions are periodic with periods 4K if u is real. Because of
this, K is also called the �quarter period". A plot of sn (u, k) for several values of the modulus k is shown
in Figure 2.
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Figure 2: Jacobian Elliptic Sine Function of u with Modulus k
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For k=0, sn (u, 0) = sin (u). As k approaches 1, the sn (u, k) looks like a "fat" sine function. For k = 1,
sn (u, 1) = tanh (u) and is not periodic (period becomes in�nite).

The quarter period or complete elliptic integral K is a function of the modulus k and is illustrated in
Figure 3.
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Figure 3: Complete Elliptic Integral as a function of the Modulus

For a modulus of zero, the quarter period is K = π/2 and it does not increase much until k nears unity.
It then increases rapidly and goes to in�nity as k goes to unity.

Another parameter that is used is the complementary modulus k' de�ned by

k2 + k'2 = 1 (8)

where both k and k' are assumed real and between 0 and 1. The complete elliptic integral of the comple-
mentary modulus is denoted K '.

In addition to the elliptic sine, other elliptic functions that are rather obvious generalizations are

cn (u, k) = cos (φ (u, k)) (9)

sc (u, k) = tan (φ (u, k)) (10)

http://cnx.org/content/m16925/1.2/
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cs (u, k) = ctn (φ (u, k)) (11)

nc (u, k) = sec (φ (u, k)) (12)

ns (u, k) = csc (φ (u, k)) (13)

There are six other elliptic functions that have no trigonometric counterparts [1]. One that is needed is

dn (u, k) =
√

1− k2sn2 (u, k) (14)

Many interesting properties of the elliptic functions exist [1]. They obey a large set of identities such as

sn2 (u, k) + cn2 (u, k) = 1 (15)

They have derivatives that are elliptic functions. For example,

d sn

du
= cn dn (16)

The elliptic functions are the solutions of a set of nonlinear di�erential equations of the form

x'' + ax± bx3 = 0 (17)

Some of the most important properties for the elliptic functions are as functions of a complex variable. For
a purely imaginary argument

sn (jv, k) = jsc
(
v, k'

)
(18)

cn (jv, k) = nc
(
v, k'

)
(19)

This indicates that the elliptic functions, in contrast to the circular and hyperbolic trigonometric functions,
are periodic in both the real and the imaginary part of the argument with periods related to K and K ',
respectively. They are the only class of functions that are �doubly periodic".

One particular value that the sn function takes on that is important in creating a rational function is

sn
(
K + jK ', k

)
= 1/k (20)

1.2 The Chebyshev Rational Function

The rational function G (ω) needed in (4) is sometimes called a Chebyshev rational function because of its
equal-ripple properties. It can be de�ned in terms of two elliptic functions with moduli k and k1 by

G (ω) = sn
(
n sn−1 (ω, k) , k1

)
(21)

In terms of the intermediate complex variable φ, G (ω) and ω become

G (ω) = sn (nφ, k1) (22)

ω = sn (φ, k) (23)

It can be shown [3] that G (ω) is a real-valued rational function if the parameters k, k1, and n take on
special values. Note the similarity of the de�nition of G (ω) to the de�nition of the Chebyshev polynomial

http://cnx.org/content/m16925/1.2/
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CN (ω). In this case, however, n is not necessarily an integer and is not the order of the �lter. Requiring that
G (ω) be a rational function requires an alignment of the imaginary periods [3] of the two elliptic functions
in (22),(23). It also requires alignment of an integer multiple of the real periods. The integer multiplier is
denoted by N and is the order of the resulting �lter [3]. These two requirements are stated by the following
very important relations:

nK ' = K '
1 alignment of imaginary periods (24)

nK = NK1 alignment of a multiple of the real periods (25)

which, on removing the parameter n, become

K1

K
N =

K '
1

K '
(26)

or

N =
KK '

1

K 'K1
(27)

These relationships are central to the design of elliptic- function �lters. N is an odd integer which is the
order of the �lter. For N = 5, the resulting rational function is shown in Figure 4.
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Figure 4: Fifth Order Elliptic Rational Function

This function is the basis of the approximation necessary for the optimal �lter frequency response. It
approximates zero over the frequency range −1 < ω < 1 by an equal-ripple oscillation between ±1. It also
approximates in�nity over the range 1/k < |ω| < ∞ by a reciprocal oscillation that keeps |F (ω) | > 1/k1.
The zero approximation is normalized in both the frequency range and the F (ω) values to unity. The in�nity
approximation has its frequency range set by the choice of the modulus k, and the minimum value of |F (ω) |
is set by the choice of the second modulus k1.

If k and k1 are determined from the �lter speci�cations, they in turn determine the complementary
moduli k' and k'1, which altogether determine the four values of the complete elliptic integral K needed to
determine the order N in (27). In general, this sequence of events will not result in an integer. In practice,
however, the next larger integer is used, and either k or k1 (or perhaps both) is altered to satisfy (27).

In addition to the two-band equal-ripple characteristics, G (ω) has another interesting and valuable
property. The pole and zero locations have a reciprocal relationship that can be expressed by

G (ω)G (ωs/ω) = 1/k1 (28)

where

ωs = 1/k (29)

http://cnx.org/content/m16925/1.2/
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This states that if the zeros of G (ω) are located at ωzi, the poles are located at

ωpi = 1/ (kωzi) (30)

If the zeros are known, the poles are known, and vice versa. A similar relation exists between the points of
zero derivatives in the 0 to 1 region and those in the 1/k to in�nity region.

The zeros of G (ω) are found from (22) by requiring

G (ω) = sn [nφ, k1] = 0 (31)

which implies

nφ = 2K1ifor i = 0, 1, ... (32)

From (21), this gives

ωzi = sn [2K1i/n, k] , i = 0, 1, ... (33)

This can be reformulated using (25) so that n and K1 are not needed. For N odd, the zero locations are

ωzi = sn [2K1i/N, k] , i = 0, 1, ... (34)

The pole locations are found from these zero locations using (30). The locations of the zero-derivative points
are given by

ωdi = sn [K (2i+ 1) /N, k] (35)

in the 0 to 1 region, and the corresponding points in the 1/k to in�nity region are found from (30).
The above relations assume N to be an odd integer. A modi�cation for N even is necessary. For proper

alignment of the real periods, the original de�nition of G (ω) is changed to

G (ω) = sn [φ+K1, k1] (36)

which gives for the zero locations with N even

ωzi = sn [(2i+ 1)K1/n, k] (37)

The even and odd N cases can be combined to give

ωzi = ±sn (iK/N, k) (38)

for

i = 0, 2, 4, ..., N − 1 for N odd (39)

i = 1, 3, 5, ..., N − 1 for N even (40)

with the poles determined from (30).
Note that it is possible to determine G (ω) from k and N without explicitly using k1 or n. Values for k1

and n are implied by the requirements of (29) or (28).

http://cnx.org/content/m16925/1.2/
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1.2.1 Zero Locations

The locations of the zeros of the �lter transfer function F (ω) are easily found since they are the same as the
poles of G (ω), given in (38).

ωzi =
±1

k sn (iK/N, k)
(41)

for

i = 0, 2, 4, ..., N − 1 N odd (42)

i = 1, 3, 5, ..., N − 1 N even (43)

These zeros are purely imaginary and lie on the ω axis.

1.2.2 Pole Locations

The pole locations are somewhat more complicated to �nd. An approach similar to that used for the
Chebyshev �lter is used here. FF (s) becomes in�nite when

1 + ε2G2 = 0 (44)

or

G = ±j (1/ε) (45)

Using (22) and the periodicity of sn (u,k) , this implies

G = sn (nφ+ 2K1i, k1) = ±j1/ε (46)

or

φ =
(
−2K1i+ sn−1 (j1/e, k1)

)
/n (47)

De�ne ν0 to be the second term in (47) by

jν0 =
(
sn−1 (j1/e, k1)

)
/n (48)

which is similar to the equation for the Chebyshev case. Using properties of sn of an imaginary variable
and (26), ν0 becomes

ν0 = (K/NK1) sc−1
(
1/ε, k'

)
(49)

The poles are now found from (22),(23), (47), and (49) to be

spi = j sn (Ki/N + jν0, k) (50)

This equation can be more clearly written by using the summation formula [1] for the elliptic sine function
to give

spi =
cn dn sn' cn' + jsn dn'

1− dn2sn'2
(51)

where

sn = sn (Ki/N, k) , cn = cn (Ki/N, k) , dn = dn (Ki/N, k) (52)

http://cnx.org/content/m16925/1.2/
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sn' = sn
(
ν0, k

'
)
, cn' = cn

(
ν0, k

'
)
, dn' = dn

(
ν0, k

'
)

(53)

for

i = 0, 2, 4, .... N odd (54)

i = 1, 3, 5, .... N even (55)

The theory of Jacobian elliptic functions can be found in [1] and its application to �lter design in [6], [3], [7].
The best techniques for calculating the elliptic functions seem to use the arithmetic-geometric mean; e�cient
algorithms are presented in [2]. A design program is given in [6] and a versitile FORTRAN program that is
easily related to the theory in this chapter is given as Program 8 in the appendix of this book. Matlab has a
powerful elliptic function �lter design command as well as accurate algorithms for evaluating the Jacobian
elliptic functions and integrals.

An alternative to the use of elliptic functions for �nding the transfer function F (s) pole locations is
to obtain the zeros from (41), then �nd G (ω) using the reciprocal relation of the poles and zeros (30).
F (s) is constructed from G (ω) and ε from (4), and the poles are found using a root-�nding algorithm.
Another possibility is to �nd the zeros from (41) and the poles from the methods for �nding a Chebyshev
passband from arbitrary zeros. These approaches avoid calculating ν0 by (49) or determining k from K/K ',
as is described in [2]. The e�cient algorithms for evaluating the elliptic functions and the common use of
powerful computers make these alternatives less attractive now.

1.2.3 Summary

In this section the basic properties of the Jacobian elliptic functions have been outlined and the necessary
conditions given for an equal-ripple rational function to be de�ned in terms of them. This rational function
was then used to construct a �lter transfer function with equal-ripple properties. Formulas were derived to
calculate the pole and zero locations for the �lter transfer functions and to relate design speci�cations to the
functions. These formulas require the evaluation of elliptic functions and are implemented in Program 8 in
the appendix.

1.3 Elliptic-Function Filter Design Procedures

The equal-ripple rational function G (ω) is used to describe an optimal frequency-response function F (jω)
and to design the corresponding �lter. The squared-magnitude frequency-response function is

|F (jω) |2 =
1

1 + ε2G(ω)2
(56)

with G (ω) de�ned by Jacobian Elliptic functions, and ε being a parameter that controls the passband
ripple. The plot of this function for N = 3 illustrates the relation to the various speci�cation parameters.

From Figure 1, it is seen that the passband ripple is measured by δ1, the stopband ripple by δ2, and the
normalized transition band by ωs. The previous section showed that

ωs = 1/k (57)

which means that the width of the transition band determines k. It should be remembered that this
development has assumed a passband edge normalized to unity. For the unnormalized case, the passband
edge is ωp and the stopband edge becomes

ωs =
ωp
k

(58)

http://cnx.org/content/m16925/1.2/
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The stopband performance is described in terms of the ripple δ2 normalized to a maximum passband response
of unity, or in terms of the attenuation b in the stopband expressed in positive dB assuming a maximum
passband response of zero dB. The stopband ripple and attenuation are determined from (56) and Figure 1
to be

δ22 = 10−b/10 =
1

1 + ε2/k2
1

(59)

This can be rearranged to give k1 in terms of the stopband ripple or attenuation.

k2
1 =

ε2

1/δ22 − 1
=

ε2

10b/10 − 1
(60)

The order N of the �lter depends on k and k1, as shown in (27). Equations (58), (60), and (27) determine
the relation of the frequency-response speci�cations and the elliptic-function parameters. The location of
the transfer function poles and zeros must then be determined.

Because of the required relationships of (27) and the fact that the order N must be an integer, the
passband ripple, stopband ripple, and transition band cannot be independently set. Several straightforward
procedures can be used that will always meet two of the speci�cations and exceed the third.

The �rst design step is generally the determination of the order N from the desired passband ripple δ1,
the stopband ripple δ2, and the transition band controlled by ωs. The following formulas determine the
moduli k and k1 from the passband ripple δ1 or its dB equavilent a, and the stopband ripple δ2 or its dB
attenuation equivalent b:

ε =

√
2δ1 − δ21

1− 2δ1 − δ21
=
√

10a/10 − 1 (61)

k1 =
ε√

1/δ22 − 1
=

ε√
10b/10 − 1

(62)

k'1 =
√

1− k2
1 (63)

k = ωp/ωs k' =
√

1− k2 (64)

The order N is the smallest integer satisfying

N ≥ KK '
1

K 'K1
(65)

This integer order N will not in general exactly satisfy (27), i.e., will not satisfy (27) with equality. Either
k or k1 must to recalculated to satisfy (27) and (65). The various possibilities for this are developed below.

1.4 Methods for Meeting Speci�cations

1.4.1 Fixed Order, Passband Ripple, and Transition Band

Given N from (65) and the speci�cations δ1, ωp, and ωs, the parameters ε and k are found from (62) and
(refcc50). From k, the complete elliptic integrals K and K' are calculated [2]. From (27), the ratio K/K '

determines the ratio K '
1/K1. Using numerical methods from [1], k1 is calculated. This gives the desired δ1,

ωp, and ωs and minimizes the stopband ripple δ2 (or maximizes the stopband attenuation b).
Using these parameters, the zeros are calculated from (refcc31) and the poles from (refcc39). Note the

zero locations do not depend on ε or k1, but only on N and ωs. This makes the tradeo� between stop and
passband occur in (refcc48) and only a�ects the calculation of nu0 in (refcc38)

This approach which minimizes the stopband ripple is used in the IIR �lter design program in the
appendix of this book.

http://cnx.org/content/m16925/1.2/
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1.4.2 Fixed Order, Stopband Rejection, and Transition Band

Given N from (65) and the speci�cations δ2, ωp, and ωs, the parameter k is found from (refcc50). From k,
the complete elliptic integrals K and K' are calculated [2]. From (27), the ratio K/K' determines the ratio
K '

1/K1 . Using numerical methods from [1], k1 is calculated. From k1 and δ2, ε and δ1 are found from

ε = k1

√
1/δ22 − 1 (66)

and

δ1 = 1− 1√
1 + ε2

(67)

This set of parameters gives the desired ωp, ωs, and stopband ripple and minimizes the passband ripple.
The zero and pole locations are found as above.

1.4.3 Fixed Order, Stopband, and Passband Ripple

Given N from (65) and the speci�cations δ1, δ2, and either ωp or ωs, the parameters ε and k1 are found from
(62) and (refcc48). From k1, the complete elliptic integrals K1 and K '

1 are calculated [2]. From (27), the
ratio K1/K

'
1 determines the ratio K '/K. Using numerical methods from [1], k is calculated. This gives the

desired passband and stopband ripple and minimizes the transition-band width. The pole and zero locations
are found as above.

1.4.4 An Approximation

In many �lter design programs, after the order N is found from (65), the design proceeds using the original
e, k, and k1, even though they do not satisfy (27). The resulting design has the desired transition band, but
both pass and stopband ripple are smaller than speci�ed. This avoids the calculation of the modulus k or
k1 from a ratio of complete elliptic integrals as was necessary in all three cases above, but produces results
that are di�cult to exactly predict.

Example 1: Design of a Third-Order Elliptic-Function Filter

A lowpass elliptic-function �lter is desired with a maximum passband ripple of δ1 = 0.1 or a =
0.91515 dB, a maximum stopband ripple of δ2 = 0.1 or b = 20 dB rejection, and a normalized
stopband edge of ωs = 1.3 radians per second. The �rst step is to determine the order of the �lter.

From ωs, the modulus k is calculated and then the complimentary modulus using the relations in
(refcc50). Special numerical algorithms illustrated in Program 8 are then used to �nd the complete
elliptic integrals K and K '[2].

k = 1/1.3 = 0.769231, k' =
√

1− k2 = 0.638971 (68)

K = 1.940714, K ' = 1.783308 (69)

From δ1, ε is calculated using (62), and from ε and δ2, k1 is calculated from (refcc48). k'1, K1, and
K '

1 are then calculated.

ε = 0.4843221 as for the Chebyshev example. (70)

k1 = 0.0486762, k'1 = 0.9988146 (71)

K1 = 1.571727, K '
1 = 4.4108715 (72)

http://cnx.org/content/m16925/1.2/
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The order is obtained from (27) by calculating

K K '

K ' K1
= 3.0541 (73)

This is close enough to 3 to set N = 3. Rather than recalculate k and k1, the already calculated
values are used as discussed in the design method D in this section. The zeros are found from
(refcc31) using only N and k from above.

ωz =
±1

k sn (2K/N, k)
= ±1.430207 (74)

To �nd the pole locations requires the calculation of ν0 from (refcc38) which is somewhat compli-
cated. It is carried out using the algorithms in Program 8 in the appendix.

ν0 =
K

N K1
sc−1

(
1/ε, k'1

)
= 0.6059485 (75)

From this value of ν0, and k and N above, the elliptic functions in (refcc40) are calculated to give

sn' = .557986, cn' = 0.829850, dn' = 0.934281 (76)

which, for the single real pole corresponding to i = 0 in (refcc39), gives

sp = 0.672393 (77)

For the complex conjugate pair of poles corresponding to i = 2, the other elliptic functions in
(refcc40) are

sn = 0.908959, cn = 0.416886, dn = 0.714927 (78)

which gives from (refcc39) for the poles

sp = 0.164126± j1.009942 (79)

The complete transfer function is

F (s) =
s2 + 2.045492

(s+ 0.672393) (s2 + 0.328252s+ 1.046920)
(80)

This design should be compared to the Chebyshev and inverse- Chebyshev designs.
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