Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » Collaborative Statistics Homework Book: Custom Version modified by V Moyle » Homework

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • College Open Textbooks display tagshide tags

    This module is included inLens: Community College Open Textbook Collaborative
    By: CC Open Textbook CollaborativeAs a part of collection: "Collaborative Statistics"

    Comments:

    "Reviewer's Comments: 'I recommend this book. Overall, the chapters are very readable and the material presented is consistent and appropriate for the course. A wide range of exercises introduces […]"

    Click the "College Open Textbooks" link to see all content they endorse.

    Click the tag icon tag icon to display tags associated with this content.

  • JVLA Endorsed

    This module is included inLens: Jesuit Virtual Learning Academy Endorsed Material
    By: Jesuit Virtual Learning AcademyAs a part of collection: "Collaborative Statistics"

    Comments:

    "This is a robust collection (textbook) approved by the College Board as a resource for the teaching of AP Statistics. "

    Click the "JVLA Endorsed" link to see all content they endorse.

  • WebAssign display tagshide tags

    This module is included inLens: WebAssign The Independent Online Homework and Assessment Solution
    By: WebAssignAs a part of collection: "Collaborative Statistics"

    Comments:

    "Online homework and assessment available from WebAssign."

    Click the "WebAssign" link to see all content they endorse.

    Click the tag icon tag icon to display tags associated with this content.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • OrangeGrove display tagshide tags

    This module is included inLens: Florida Orange Grove Textbooks
    By: Florida Orange GroveAs a part of collection: "Collaborative Statistics"

    Click the "OrangeGrove" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Bookshare

    This module is included inLens: Bookshare's Lens
    By: Bookshare - A Benetech InitiativeAs a part of collection: "Collaborative Statistics"

    Comments:

    "DAISY and BRF versions of this collection are available."

    Click the "Bookshare" link to see all content affiliated with them.

  • Featured Content display tagshide tags

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "Collaborative Statistics"

    Comments:

    "Collaborative Statistics was written by two faculty members at De Anza College in Cupertino, California. This book is intended for introductory statistics courses being taken by students at two- […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • statistics display tagshide tags

    This module is included inLens: Statistics
    By: Brylie OxleyAs a part of collection: "Collaborative Statistics"

    Click the "statistics" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

  • Lucy Van Pelt display tagshide tags

    This module is included inLens: Lucy's Lens
    By: Tahiya MaromeAs a part of collection: "Collaborative Statistics"

    Comments:

    "Part of the Books featured on Community College Open Textbook Project"

    Click the "Lucy Van Pelt" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

  • Educational Technology Lens display tagshide tags

    This module is included inLens: Educational Technology
    By: Steve WilhiteAs a part of collection: "Collaborative Statistics"

    Click the "Educational Technology Lens" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

  • Statistics

    This module is included inLens: Mathieu Plourde's Lens
    By: Mathieu PlourdeAs a part of collection: "Collaborative Statistics"

    Click the "Statistics" link to see all content selected in this lens.

  • statf12

    This module is included inLens: Statistics Fall 2012
    By: Alex KolesnikAs a part of collection: "Collaborative Statistics"

    Click the "statf12" link to see all content selected in this lens.

  • UTEP display tagshide tags

    This module is included inLens: Amy Wagler's Lens
    By: Amy WaglerAs a part of collection: "Collaborative Statistics"

    Click the "UTEP" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

  • Make Textbooks Affordable

    This module is included inLens: Make Textbooks Affordable
    By: Nicole AllenAs a part of collection: "Collaborative Statistics"

    Click the "Make Textbooks Affordable" link to see all content selected in this lens.

  • BUS204 Homework display tagshide tags

    This module is included inLens: Saylor BUS 204 Homework
    By: David BourgeoisAs a part of collection: "Collaborative Statistics"

    Comments:

    "Homework for Discrete Variables/Probability. "

    Click the "BUS204 Homework" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

  • Exercises

    This module is included inLens: Mihai Nica's Lens
    By: Mihai Nica

    Click the "Exercises" link to see all content selected in this lens.

  • crowe

    This module is included in aLens by: Chris RoweAs a part of collection: "Collaborative Statistics"

    Click the "crowe" link to see all content selected in this lens.

  • Bio 502 at CSUDH display tagshide tags

    This module is included inLens: Bio 502
    By: Terrence McGlynnAs a part of collection: "Collaborative Statistics"

    Comments:

    "This is the course textbook for Biology 502 at CSU Dominguez Hills"

    Click the "Bio 502 at CSUDH" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Exercise 1

According to a study done by De Anza students, the height for Asian adult males is normally distributed with an average of 66 inches and a standard deviation of 2.5 inches. Suppose one Asian adult male is randomly chosen. Let X = X = size 12{X={}} {} height of the individual.

  • a. X X~_______ (_______,_______)_______(_______,_______)
  • b. Find the probability that the person is between 65 and 69 inches. Include a sketch of the graph and write a probability statement.
  • c. Would you expect to meet many Asian adult males over 72 inches? Explain why or why not, and justify your answer numerically.
  • d. The middle 40% of heights fall between what two values? Sketch the graph and write the probability statement.

Solution

  • a. N ( 66 , 2.5 ) N ( 66 , 2.5 ) size 12{X "~" N \( "21",7 \) } {}
  • b. 0.5404
  • c. No
  • d. Between 64.7 and 67.3 inches

Exercise 2

IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose one individual is randomly chosen. Let X = X = size 12{X={}} {} IQ of an individual.

  • a. X X~_______ (_______,_______)_______(_______,_______)
  • b. Find the probability that the person has an IQ greater than 120. Include a sketch of the graph and write a probability statement.
  • c. Mensa is an organization whose members have the top 2% of all IQs. Find the minimum IQ needed to qualify for the Mensa organization. Sketch the graph and write the probability statement.
  • d. The middle 50% of IQs fall between what two values? Sketch the graph and write the probability statement.

Exercise 3

The percent of fat calories that a person in America consumes each day is normally distributed with a mean of about 36 and a standard deviation of 10. Suppose that one individual is randomly chosen. Let X = X = size 12{X={}} {} percent of fat calories.

  • a. X X~_______ (_______,_______)_______(_______,_______)
  • b. Find the probability that the percent of fat calories a person consumes is more than 40. Graph the situation. Shade in the area to be determined.
  • c. Find the maximum number for the lower quarter of percent of fat calories. Sketch the graph and write the probability statement.

Solution

  • a. N ( 36 , 10 ) N ( 36 , 10 ) size 12{X "~" N \( 3,1 "." 5 "." \) } {}
  • b. 0.3446
  • c. 29.3

Exercise 4

Suppose that the distance of fly balls hit to the outfield (in baseball) is normally distributed with a mean of 250 feet and a standard deviation of 50 feet.

  • a. If X=X= size 12{X={}} {} distance in feet for a fly ball, then X X~_______ (_______,_______)_______(_______,_______)
  • b. If one fly ball is randomly chosen from this distribution, what is the probability that this ball traveled fewer than 220 feet? Sketch the graph. Scale the horizontal axis X. Shade the region corresponding to the probability. Find the probability.
  • c. Find the 80th percentile of the distribution of fly balls. Sketch the graph and write the probability statement.

Exercise 5

In China, 4-year-olds average 3 hours a day unsupervised. Most of the unsupervised children live in rural areas, considered safe. Suppose that the standard deviation is 1.5 hours and the amount of time spent alone is normally distributed. We randomly survey one Chinese 4-year-old living in a rural area. We are interested in the amount of time the child spends alone per day. (Source: San Jose Mercury News)

  • a. In words, define the random variable XX size 12{X} {}. X=X= size 12{X={}} {}
  • b. XX~
  • c. Find the probability that the child spends less than 1 hour per day unsupervised. Sketch the graph and write the probability statement.
  • d. What percent of the children spend over 10 hours per day unsupervised?
  • e. 70% of the children spend at least how long per day unsupervised?

Solution

  • a. the time (in hours) a 4-year-old in China spends unsupervised per day
  • b. N ( 3,1 . 5 ) N ( 3,1 . 5 ) size 12{X "~" N \( 3,1 "." 5 "." \) } {}
  • c. 0.0912
  • d. 0
  • e. 2.21 hours

Exercise 6

In the 1992 presidential election, Alaska’s 40 election districts averaged 1956.8 votes per district for President Clinton. The standard deviation was 572.3. (There are only 40 election districts in Alaska.) The distribution of the votes per district for President Clinton was bell-shaped. Let X = X = size 12{X={}} {} number of votes for President Clinton for an election district. (Source: The World Almanac and Book of Facts)

  • a. State the approximate distribution of XX size 12{X} {}. XX~
  • b. Is 1956.8 a population mean or a sample mean? How do you know?
  • c. Find the probability that a randomly selected district had fewer than 1600 votes for President Clinton. Sketch the graph and write the probability statement.
  • d. Find the probability that a randomly selected district had between 1800 and 2000 votes for President Clinton.
  • e. Find the third quartile for votes for President Clinton.

Exercise 7

Suppose that the duration of a particular type of criminal trial is known to be normally distributed with a mean of 21 days and a standard deviation of 7 days.

  • a. In words, define the random variable XX size 12{X} {}. X=X= size 12{X={}} {}
  • b. X X~
  • c. If one of the trials is randomly chosen, find the probability that it lasted at least 24 days. Sketch the graph and write the probability statement.
  • d. 60% of all of these types of trials are completed within how many days?

Solution

  • a. The duration of a criminal trial
  • b. N ( 21 , 7 ) N ( 21 , 7 ) size 12{X=N \( "21",7 \) } {}
  • c. 0.3341
  • d. 22.77

Exercise 8

Terri Vogel, an amateur motorcycle racer, averages 129.71 seconds per 2.5 mile lap (in a 7 lap race) with a standard deviation of 2.28 seconds . The distribution of her race times is normally distributed. We are interested in one of her randomly selected laps. (Source: log book of Terri Vogel)

  • a. In words, define the random variable XX size 12{X} {}. X=X= size 12{X={}} {}
  • b. XX~
  • c. Find the percent of her laps that are completed in less than 130 seconds.
  • d. The fastest 3% of her laps are under _______ .
  • e. The middle 80% of her laps are from _______ seconds to _______ seconds.

Exercise 9

Thuy Dau, Ngoc Bui, Sam Su, and Lan Voung conducted a survey as to how long customers at Lucky claimed to wait in the checkout line until their turn. Let X = X = size 12{X={}} {} time in line. Below are the ordered real data (in minutes):

Table 1
0.50 4.25 5 6 7.25
1.75 4.25 5.25 6 7.25
2 4.25 5.25 6.25 7.25
2.25 4.25 5.5 6.25 7.75
2.25 4.5 5.5 6.5 8
2.5 4.75 5.5 6.5 8.25
2.75 4.75 5.75 6.5 9.5
3.25 4.75 5.75 6.75 9.5
3.75 5 6 6.75 9.75
3.75 5 6 6.75 10.75
  • a. Calculate the sample mean and the sample standard deviation.
  • b. Construct a histogram. Start the xaxisxaxis size 12{x - ital "axis"} {} at 0.3750.375 size 12{ - 0 "." "375"} {} and make bar widths of 2 minutes.
  • c. Draw a smooth curve through the midpoints of the tops of the bars.
  • d. In words, describe the shape of your histogram and smooth curve.
  • e. Let the sample mean approximate μμ size 12{μ} {} and the sample standard deviation approximate σσ size 12{σ} {}. The distribution of XX size 12{X} {} can then be approximated by XX~
  • f. Use the distribution in (e) to calculate the probability that a person will wait fewer than 6.1 minutes.
  • g. Determine the cumulative relative frequency for waiting less than 6.1 minutes.
  • h. Why aren’t the answers to (f) and (g) exactly the same?
  • i. Why are the answers to (f) and (g) as close as they are?
  • j. If only 10 customers were surveyed instead of 50, do you think the answers to (f) and (g) would have been closer together or farther apart? Explain your conclusion.

Solution

  • a. The sample mean is 5.51 and the sample standard deviation is 2.15
  • e. N ( 5 . 51 , 2 . 15 ) N ( 5 . 51 , 2 . 15 ) size 12{X "~" N \( 5 "." "51",2 "." "15" \) } {}
  • f. 0.6081
  • g. 0.64

Exercise 10

Suppose that Ricardo and Anita attend different colleges. Ricardo’s GPA is the same as the average GPA at his school. Anita’s GPA is 0.70 standard deviations above her school average. In complete sentences, explain why each of the following statements may be false.

  • a. Ricardo’s actual GPA is lower than Anita’s actual GPA.
  • b. Ricardo is not passing since his z-score is zero.
  • c. Anita is in the 70th percentile of students at her college.

Exercise 11

Below is a sample of the maximum capacity (maximum number of spectators) of sports stadiums. The table does not include horse racing or motor racing stadiums. (Source: http://en.wikipedia.org/wiki/List_of_stadiums_by_capacity)

Table 2
40,000 40,000 45,050 45,500 46,249 48,134
49,133 50,071 50,096 50,466 50,832 51,100
51,500 51,900 52,000 52,132 52,200 52,530
52,692 53,864 54,000 55,000 55,000 55,000
55,000 55,000 55,000 55,082 57,000 58,008
59,680 60,000 60,000 60,492 60,580 62,380
62,872 64,035 65,000 65,050 65,647 66,000
66,161 67,428 68,349 68,976 69,372 70,107
70,585 71,594 72,000 72,922 73,379 74,500
75,025 76,212 78,000 80,000 80,000 82,300
  • a. Calculate the sample mean and the sample standard deviation for the maximum capacity of sports stadiums (the data).
  • b. Construct a histogram of the data.
  • c. Draw a smooth curve through the midpoints of the tops of the bars of the histogram.
  • d. In words, describe the shape of your histogram and smooth curve.
  • e. Let the sample mean approximate μμ size 12{μ} {} and the sample standard deviation approximate σσ size 12{σ} {}. The distribution of XX size 12{X} {} can then be approximated by XX~
  • f. Use the distribution in (e) to calculate the probability that the maximum capacity of sports stadiums is less than 67,000 spectators.
  • g. Determine the cumulative relative frequency that the maximum capacity of sports stadiums is less than 67,000 spectators. Hint: Order the data and count the sports stadiums that have a maximum capacity less than 67,000. Divide by the total number of sports stadiums in the sample.
  • h. Why aren’t the answers to (f) and (g) exactly the same?

Solution

  • a. The sample mean is 60,136.4 and the sample standard deviation is 10,468.1.
  • e. N ( 60136 . 4 , 10468 . 1 ) N ( 60136 . 4 , 10468 . 1 )
  • f. 0.7440
  • g. 0.7167

Try These Multiple Choice Questions

The questions below refer to the following: The patient recovery time from a particular surgical procedure is normally distributed with a mean of 5.3 days and a standard deviation of 2.1 days.

Exercise 12

What is the median recovery time?

  • A. 2.7
  • B. 5.3
  • C. 7.4
  • D. 2.1

Solution

B

Exercise 13

What is the z-score for a patient who takes 10 days to recover?

  • A. 1.5
  • B. 0.2
  • C. 2.2
  • D. 7.3

Solution

C

Exercise 14

What is the probability of spending more than 2 days in recovery?

  • A. 0.0580
  • B. 0.8447
  • C. 0.0553
  • D. 0.9420

Solution

D

Exercise 15

The 90th percentile for recovery times is?

  • A. 8.89
  • B. 7.07
  • C. 7.99
  • D. 4.32

Solution

C

The questions below refer to the following: The length of time to find a parking space at 9 A.M. follows a normal distribution with a mean of 5 minutes and a standard deviation of 2 minutes.

Exercise 16

Based upon the above information and numerically justified, would you be surprised if it took less than 1 minute to find a parking space?

  • A. Yes
  • B. No
  • C. Unable to determine

Solution

A

Exercise 17

Find the probability that it takes at least 8 minutes to find a parking space.

  • A. 0.0001
  • B. 0.9270
  • C. 0.1862
  • D. 0.0668

Solution

D

Exercise 18

Seventy percent of the time, it takes more than how many minutes to find a parking space?

  • A. 1.24
  • B. 2.41
  • C. 3.95
  • D. 6.05

Solution

C

Exercise 19

If the mean is significantly greater than the standard deviation, which of the following statements is true?

  • A. I only
  • B. II only
  • C. III only
  • D. I, II, and III

Solution

B

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks