NORMAL DISTRIBUTION: NORMAL DISTRIBUTION LAB I (EDITED: TEEGARDEN)*

Mary Teegarden

Based on Normal Distribution: Normal Distribution Lab I^{\dagger} by

Barbara Illowsky, Ph.D.

Susan Dean

This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0^{\ddagger}

Abstract

Labs changed to incorporate mini-tabs.

Normal Distribution Lab Name:

1 I Student Learning Outcome:

* The student will compare and contrast empirical data and a theoretical distribution.

* Find Probabilities for specific Normal Distributions

2 II The Situation

It is generally accepted that the mean body temperature is 98.6 degrees. If a sample of size 100 resulted in a sample mean of 98.3 degrees with a standard deviation of 0.64 degrees. Does this sample suggest that the mean body temperature is actually lower than 98.6 degrees?

3 III Simulation: To answer the question, complete the following simulation.

Using Minitab (Calc -> Random Data-> Normal), generate 100 values from a normally distributed population with a mean of 98.6 degrees and a standard deviation of 0.64 degrees (using the sample standard deviation given in the situation since the population deviation is unknown). Repeat the simulation 9 more times for a total of 10. (Requesting the data be stored in c2-c10 will generate the remaining 9 columns of data with one command.)

^{*}Version 1.3: Jul 14, 2009 8:58 pm -0500

 $^{^{\}dagger}$ http://cnx.org/content/m16981/1.7/

 $^{^{\}rm thtp://creative commons.org/licenses/by/2.0/$

OpenStax-CNX module: m17338

4 IV Data Collection

Use Stats -> Basic Stats -> Display Descriptive and select all 10 columns to determine the sample mean for each data set. Record the values below and include the session window with this lab.

$\overline{x}_1 = _______$	$\overline{x}_2 = ________$	$\overline{x}_3 = ________$	$\overline{x}_4 = ________$
$\overline{x}_5 = ________$	$\overline{x}_6 = ________$	$\overline{x}_7 = _______$	$\overline{x}_8 = _________$
$\overline{x}_9 = _____$	$\overline{x}_{10} = _$	-	

5 V Analyze the Data – Using complete sentences.

Based on your simulation, do you think that a sample of size 100 with a mean temperature of 98.3 is reasonable? Answer using 2 - 3 complete sentences.

6 VI Finding Probabilities for Normal Distribution

For each of the following, first write the question in **symbolic form** and then using Minitab (Calc -> Probability Distributions -> Normal), find the probabilities. (attach your session window to this lab)

1. Given a population with a normal distribution, a mean of 0, and a standard deviation of 1, find the probability of a value less than 1.25 ______

2. Given a population with a normal distribution, a mean of 25, and a standard deviation of 3, find the probability of a value greater than 21.25.

3. Given a population with a normal distribution, a mean of 100, and a standard deviation of 20, find the probability of a value between 87 and 122.

4. Given a population with a normal distribution, a mean of 150, and a standard deviation of 35, what value has an area of 0.34 to the left?

value has an area of 0.34 to the left?______5. Given a population with a normal distribution, a mean of 150, and a standard deviation of 35, what value has an area of 0.34 to the right?

6. Given a population with a normal distribution, a mean of 15, and a standard deviation of 2, what value has an area of 0.8 to the left?
7. Given a population with a normal distribution, a mean of 200, and a standard deviation of 15, which

7. Given a population with a normal distribution, a mean of 200, and a standard deviation of 15, which two values form the upper and lower boundary of the middle 80%?_____