Connexions

You are here: Home » Content » Sample Size

Recently Viewed

This feature requires Javascript to be enabled.

Sample Size

Module by: Mary Teegarden. E-mail the author

Summary: Calculations for determining the required sample sized when calculation a confidence interval for the population mean or population proportion.

Determining Sample Size Required to Estimate μ

Prior to creating a confidence interval a sample must be taken. Often the number of data values needed in a sample to obtain a particular level of confidence within a given error needs to be determined prior to taking the sample. If the sample is too small the result may not be useful and if the sample is too big both time and money are wasted in the sampling.

Let’s begin by looking at the equation for the Error Bound.

EBM = Z α 2 σ n EBM = Z α 2 σ n size 12{ ital "EBM"=Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } { {σ} over { sqrt {n} } } } {}

To affect the size of the error, what can be changed in the formula?

Only Z α 2 Z α 2 size 12{Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } } {}, by changing the level of confidence, or n by changing the sample size affects the error. The standard deviation is a given which one can not change. (Note if n > 30 then the sample standard deviation can be used to approximate the population standard deviation.)

Example 1

Given the following data: n = 64, x¯x¯ size 12{ {overline {x}} } {}= 36, and σ = 3, the EBM for a 80%, 90%, 95% and 99% confidence interval are:

80%: EBM = Z α 2 σn Z α 2 σn size 12{Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } { {σ} over { sqrt {n} } } } {}= 1.28 364364 size 12{ { {3} over { sqrt {"64"} } } } {}= 0.48

90%: EBM = Z α 2 σn Z α 2 σn size 12{Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } { {σ} over { sqrt {n} } } } {}= 1.645 364364 size 12{ { {3} over { sqrt {"64"} } } } {} = 0.616875

95%: EBM = Z α 2 σn Z α 2 σn size 12{Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } { {σ} over { sqrt {n} } } } {}= 1.96 364364 size 12{ { {3} over { sqrt {"64"} } } } {}= 0.735

99%: EBM = Z α 2 σn Z α 2 σn size 12{Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } { {σ} over { sqrt {n} } } } {}= 2.58 364364 size 12{ { {3} over { sqrt {"64"} } } } {} = 0.9675

Note that as the confidence increases, so also does the EBM. To ensure that the error bound is small, the confidence must be decreased. Hence changing the confidence to lower the error is not a practical solution.

Example 2

What happens as the sample size is increased? Calculate the EBM for a 90% confidence interval for n = 25, 64, and 100.

n = 25: EBM = Z α 2 σn Z α 2 σn size 12{Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } { {σ} over { sqrt {n} } } } {}= 1.645 325325 size 12{ { {3} over { sqrt {"25"} } } } {} = 0987

n = 64: EBM = Z α 2 σn Z α 2 σn size 12{Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } { {σ} over { sqrt {n} } } } {}= 1.645 364364 size 12{ { {3} over { sqrt {"64"} } } } {} =0.616875

n = 100: EBM = Z α 2 σn Z α 2 σn size 12{Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } { {σ} over { sqrt {n} } } } {}= 1.645 31003100 size 12{ { {3} over { sqrt {"100"} } } } {} = 0.4935

As the sample size increases, the EBM decreases. The question now becomes how large a sample is needed for a particular error?

Begin by solving the equation for the EBM in terms of n.

EBM = Z α 2 σ n n = Z α 2 σ EBM 2 EBM = Z α 2 σ n n = Z α 2 σ EBM 2 size 12{ ital "EBM"=Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } { {σ} over { sqrt {n} } } drarrow n= left ( { {Z rSub { { size 6{α} } wideslash { size 6{2} } } size 12{σ}} over { ital "EBM"} } right ) rSup {2} } {}
(1)
• Where ZZ size 12{Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } } {}= the critical z score based on the desired confidence level
• EBM = desired margin of error
• σ = population standard deviation

Often the population standard deviation is unknown; hence the sample standard deviation from a previous sample of size greater than 30 may be used as an approximation to σ.

The value found by using the formula for sample size is generally not a whole number. However the sample size must be a whole number, so ALWAYS ROUND UP to the next larger whole number.

Example 3

Suppose for the given information, we want to be 90% confident with an error of only ±0.5, how large should n be?

Now substitute the given values:

n = Z α 2 σ EBM 2 = 1 . 645 ( 3 ) 0 . 5 2 = 9 . 87 2 = 97 . 4169 n = Z α 2 σ EBM 2 = 1 . 645 ( 3 ) 0 . 5 2 = 9 . 87 2 = 97 . 4169 size 12{n= left ( { {Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } σ} over { ital "EBM"} } right ) rSup {2} size 12{ {}= left ( { {1 "." "645" $$3$$ } over {0 "." 5} } right ) rSup {2} } size 12{ {}=9 "." "87" rSup {2} } size 12{ {}="97" "." "4169"}} {}
(2)

Since you can not sample less than a whole this value n = 98.

Example 4

How large a sample would you need if you wanted to be 95% confident with an error of ± 0.25?

n = Z α 2 σ EBM 2 = 1.96 ( 3 ) 0.25 2 = 23.52 2 554.19 n = 554 n = Z α 2 σ EBM 2 = 1.96 ( 3 ) 0.25 2 = 23.52 2 554.19 n = 554 size 12{n= left ( { {Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } σ} over { ital "EBM"} } right ) rSup {2} size 12{ {}= left ( { {1 "." "96" $$3$$ } over {0 "." "25"} } right ) rSup {2} } size 12{ {}="23" "." "52" rSup {2} } size 12{ approx "553" "." "19" drarrow n="554"}} {}
(3)

Exercise 1

Suppose the scores on a statistics final are normally distributed with a standard deviation of 10 points. You have been asked to construct a 95% confidence interval with an error of no more than 2 points.

Exercise 2

Suppose you want to be 98% confident with an error of no more than 1.5 points, how large must your sample be?

Determining Sample Size Required to Estimate p.

Again, let’s look at the equation for the Error Bound.

{} EBP = Z α 2 p ' q ' n EBP = Z α 2 p ' q ' n size 12{ ital "EBP"=Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } sqrt { { {p'q'} over {n} } } } {}

• where p’ = xnxn size 12{ { {x} over {n} } } {} is the point estimate for the true population proportion
• x = the number of successes
• n = the sample size
• q’ = 1 – p’

Solving for n, we obtain: n= Z α 2 EBP2p'q'n= Z α 2 EBP2p'q' size 12{n= left ( { {Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } } over { ital "EBP"} } right ) rSup {2} size 12{p'q'}} {}

Example 5

Suppose that a previous study claimed that only 25% of people recycle on a regular basis. Determine the sample size needed to create a 95% confidence interval for the true population proportion with an error of only +/- 3%.

p’ = 0.25 => q’ = 1 – p’ = 0.75

n= Z α 2 EBP2p'q'=1.960.032(0.25)(0.75)=800.33.n= Z α 2 EBP2p'q'=1.960.032(0.25)(0.75)=800.33. size 12{n= left ( { {Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } } over { ital "EBP"} } right ) rSup {2} size 12{p'q'= left ( { {1 "." "96"} over {0 "." "03"} } right ) rSup {2} } size 12{ $$0 "." "25"$$ $$0 "." "75"$$ ="800" "." "33" "." }} {}

AWAYS ROUND UP, hence n = 801.

If there is no previous sample, let p’ = 0.5 and q’ = 0.5 as this gives the largest value for n.

Example 6

What would n be for a 95% confidence interval with an error of only +/-3% with no sample data?

n = Z α 2 EBP 2 p ' q ' = 1 . 96 0 . 03 2 ( 0 . 5 ) ( 0 . 5 ) 1067 . 1 n = Z α 2 EBP 2 p ' q ' = 1 . 96 0 . 03 2 ( 0 . 5 ) ( 0 . 5 ) 1067 . 1 size 12{n= left ( { {Z rSub { size 8{ { size 6{α} } wideslash { size 6{2} } } } } over { ital "EBP"} } right ) rSup {2} size 12{p'q'= left ( { {1 "." "96"} over {0 "." "03"} } right ) rSup {2} } size 12{ $$0 "." 5$$ $$0 "." 5$$ approx "1067" "." 1}} {}
(5)

AWAYS ROUND UP, hence n = 1068

Note that not having a previous sample greatly increases the number of data values needed in a sample. Often a pilot study is done to generate an approximation for p.

Exercise 3

The Mesa College mathematics department has noticed that a number of students place in a non-transfer level course and only need a 6 week refresher rather than an entire semester long course. If it is thought that about 10% of the students fall in this category, how many must the department survey is they wish to be 95% certain that the true population proportion is within +/-5%?

Exercise 4

Suppose the math department has no previous information. How many students should be surveyed?

Exercise 5

Suppose Cardmart wish to know what proportion of men buy their wife a Mother’s Day Card. How many people must be sampled is they wish to be 95% certain that the proportion is within 2%? Suppose that a previous sample of 500 men reported that 421 of them bought their wife a Mother’s Day Card.

Exercise 6

Suppose there is no previous sample. How many men will need to be surveyed?

Content actions

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Reuse / Edit:

Reuse or edit module (?)

Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.