Skip to content Skip to navigation

OpenStax_CNX

You are here: Home » Content » Algebra Lineal, Ejercicio 6.1, 2.

Navigation

Recently Viewed

This feature requires Javascript to be enabled.
 

Algebra Lineal, Ejercicio 6.1, 2.

Module by: Daniel Cárdenas. E-mail the author

Summary: Ejercicio 6.1, 2, de el libro Algebra Lineal de Bernard Kolman.

2. Siendo VV conjunto de todas las ternas ordenadas de números reales (o,y,z);(o,y,z);

( 0 , y , z ) ( 0 , y ' , z ' ) = ( 0 , y + y ' , z + z ' ) ( 0 , y , z ) ( 0 , y ' , z ' ) = ( 0 , y + y ' , z + z ' )
(1)
c ( 0 , y , z ) = ( 0 , 0 , c z ) c ( 0 , y , z ) = ( 0 , 0 , c z )
(2)

Determine si VV es cerrado dadas las anteriores operaciones.

- Tomado de: Algebra Lineal, Bernard Kolman, ejercicio 6.1

- Resuelto por Daniel Cárdenas.

Solución

Tomamos valores genéricos

V = ( 0 , y 1 , z 1 ) V = ( 0 , y 1 , z 1 )
(3)
U = ( 0 , y 2 , z 2 ) U = ( 0 , y 2 , z 2 )
(4)

Tenemos entonces:

V U = ( 0 , y 1 + y 2 , z 1 + z 2 ) V U = ( 0 , y 1 + y 2 , z 1 + z 2 )
(5)

Tomando y1+y2y1+y2 como yy, y z1+z2z1+z2 como zz :

V U = ( 0 , y , z ) V U = ( 0 , y , z )
(6)

Como vemos, la suma es cerrada para VV.

Luego, tenemos:

c V = ( 0 , 0 , c z 1 ) c V = ( 0 , 0 , c z 1 )
(7)

Como 0 es un real tambien, podemos decir que y=0y=0 y definir:

c V = ( 0 , y , c z 1 ) c V = ( 0 , y , c z 1 )
(8)

y como cualquier cc por z1z1, siendo reales, daran cualquier real que diremos que es zz

c V = ( 0 , y , z ) c V = ( 0 , y , z )
(9)

vemos que la multiplicación por escalar también es cerrada.

Content actions

Download module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks