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1 Introduction

It is often desired to analyze and process continuous-time signals using a computer. However, in order to
process a continuous-time signal, it must �rst be digitized. This means that the continuous-time signal must
be sampled and quantized, forming a digital signal that can be stored in a computer. Analog systems can
be converted to their discrete-time counterparts, and these digital systems then process discrete-time signals
to produce discrete-time outputs. The digital output can then be converted back to an analog signal, or
reconstructed, through a digital-to-analog converter. Figure 1 illustrates an example, containing the three
general components described above: a sampling system, a digital signal processor, and a reconstruction
system.

When designing such a system, it is essential to understand the e�ects of the sampling and reconstruction
processes. Sampling and reconstruction may lead to di�erent types of distortion, including low-pass �ltering,
aliasing, and quantization. The system designer must insure that these distortions are below acceptable levels,
or are compensated through additional processing.

Figure 1: Example of a typical digital signal processing system.

2 Sampling Overview

Sampling is simply the process of measuring the value of a continuous-time signal at certain instants of time.
Typically, these measurements are uniformly separated by the sampling period, Ts. If x (t) is the input
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signal, then the sampled signal, y (n), is as follows:

y (n) = x (t)|t=nTs . (1)

A critical question is the following: What sampling period, Ts, is required to accurately represent the
signal x (t)? To answer this question, we need to look at the frequency domain representations of y (n)
and x (t). Since y (n) is a discrete-time signal, we represent its frequency content with the discrete-time
Fourier transform (DTFT), Y

(
ejω
)
. However, x (t) is a continuous-time signal, requiring the use of the

continuous-time Fourier transform (CTFT), denoted as X (f). Fortunately, Y
(
ejω
)
can be written in terms

of X (f):

Y
(
ejω
)

= 1
Ts

∑∞
k=−∞ X (f)|f=ω−2πk

2πTs

= 1
Ts

∑∞
k=−∞X

(
ω−2πk
2πTs

)
.

(2)

Consistent with the properties of the DTFT, Y
(
ejω
)
is periodic with a period 2π. It is formed by rescaling

the amplitude and frequency of X (f), and then repeating it in frequency every 2π. The critical issue
of the relationship in (2) is the frequency content of X (f). If X (f) has frequency components that are
above 1/ (2Ts), the repetition in frequency will cause these components to overlap with (i.e. add to) the
components below 1/ (2Ts). This causes an unrecoverable distortion, known as aliasing, that will prevent
a perfect reconstruction of X (f). We will illustrate this later in the lab. The 1/ (2Ts) �cuto� frequency� is
known as the Nyquist frequency.

To prevent aliasing, most sampling systems �rst low pass �lter the incoming signal to ensure that its
frequency content is below the Nyquist frequency. In this case, Y

(
ejω
)
can be related to X (f) through the

k = 0 term in (2):

Y
(
ejω
)

=
1
Ts
X

(
ω

2πTs

)
for ω ∈ [−π, π] . (3)

Here, it is understood that Y
(
ejω
)
is periodic with period 2π. Note in this expression that Y

(
ejω
)
and

X (f) are related by a simple scaling of the frequency and magnitude axes. Also note that ω = π in Y
(
ejω
)

corresponds to the Nyquist frequency, f = 1/ (2Ts) in X (f).
Sometimes after the sampled signal has been digitally processed, it must then converted back to an analog

signal. Theoretically, this can be done by converting the discrete-time signal to a sequence of continuous-time
impulses that are weighted by the sample values. If this continuous-time �impulse train� is �ltered with an
ideal low pass �lter, with a cuto� frequency equal to the Nyquist frequency, a scaled version of the original
low pass �ltered signal will result. The spectrum of the reconstructed signal S (f) is given by

S (f) = {
Y
(
ej2πfTs

)
for |f | < 1

2Ts

0 otherwise.
(4)
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3 Sampling and Reconstruction Using Sample-and-Hold

Figure 2: Sampling and reconstruction using a sample-and-hold.

In practice, signals are reconstructed using digital-to-analog converters. These devices work by reading the
current sample, and generating a corresponding output voltage for a period of Ts seconds. The combined
e�ect of sampling and D/A conversion may be thought of as a single sample-and-hold device. Unfortunately,
the sample-and-hold process distorts the frequency spectrum of the reconstructed signal. In this section, we
will analyze the e�ects of using a zeroth − order sample-and-hold in a sampling and reconstruction system.
Later in the laboratory, we will see how the distortion introduced by a sample-and-hold process may be
reduced through the use of discrete-time interpolation.

Figure 2 illustrates a system with a low-pass input �lter, a sample-and-hold device, and a low-pass output
�lter. If there were no sampling, this system would simply be two analog �lters in cascade. We know the
frequency response for this simpler system. Any di�erences between this and the frequency response for
the entire system is a result of the sampling and reconstruction. Our goal is to compare the two frequency
responses using Matlab. For this analysis, we will assume that the �lters are N th order Butterworth �lters
with a cuto� frequency of fc, and that the sample-and-hold runs at a sampling rate of fs = 1/Ts .

We will start the analysis by �rst examining the ideal case. Consider replacing the sample-and-hold with
an ideal impulse generator, and assume that instead of the Butterworth �lters we use perfect low-pass �lters
with a cuto� of fc . After analyzing this case we will modify the results to account for the sample-and-hold
and Butterworth �lter roll-o�.

If an ideal impulse generator is used in place of the sample-and-hold, then the frequency spectrum of the
impulse train can be computed by combining the sampling equation in (2) with the reconstruction equation
in (4).

S (f) = Y
(
ej2πfTs

)
= 1

Ts

∑∞
k=−∞X

(
2πfTs−2πk

2πTs

)
= 1

Ts

∑∞
k=−∞X (f − kfs) , for |f | ≤ 1

2Ts
.

S (f) = 0 for |f | > 1
2Ts

.

(5)

If we assume that fs > 2fc, then the in�nite sum reduces to one term. In this case, the reconstructed signal
is given by

S (f) =
1
Ts
X (f) . (6)
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Notice that the reconstructed signal is scaled by the factor 1
Ts
.

Of course, the sample-and-hold does not generate perfect impulses. Instead it generates a pulse of width
Ts, and magnitude equal to the input sample. Therefore, the new signal out of the sample-and-hold is
equivalent to the old signal (an impulse train) convolved with the pulse

p (t) = rect

(
t

Ts
− 1

2

)
. (7)

Convolution in the time domain is equivalent to multiplication in the frequency domain, so this convolution
with p (t) is equivalent to multiplying by the Fourier transform P (f) where

|P (f) | = Ts|sinc (f/fs) | . (8)

Finally, the magnitude of the frequency response of the N -th order Butterworth �lter is given by

|Hb (f) | = 1

1 +
(
f
fc

)N . (9)

We may calculate the complete magnitude response of the sample-and-hold system by combining the e�ects
of the Butterworth �lters in (9), the ideal sampling system in (6), and the sample-and-hold pulse width in
(8). This yields the �nal expression

|H (f) | = |Hb (f)P (f) 1
Ts
Hb (f) |

=
(

1

1+( f
fc

)N

)2

|sinc (f/fs) | .
(10)

Notice that the expression |sinc (f/fs) | produces a roll-o� in frequency which will attenuate frequencies
close to the Nyquist rate. Generally, this roll-o� is not desirable.
INLAB REPORT

Do the following using Ts = 1 sec, fc = 0.45 Hz, and N = 20. Use Matlab to produce the plots (magnitude
only), for frequencies in the range: f = -1:.001:1.

• Compute and plot the magnitude response of the system in Figure 2 without the sample-and-hold
device.

• Compute and plot the magnitude response of the complete system in Figure 2.
• Comment on the shape of the two magnitude responses. How might the magnitude response of the

sample-and-hold a�ect the design considerations of a high quality audio CD player?

http://cnx.org/content/m18076/1.3/
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4 Simulink Overview

Figure 3: Simulink utilities for lab 4.

In this lab we will use Simulink to simulate the e�ects of the sampling and reconstruction processes. Simulink
treats all signals as continuous-time signals. This means that �sampled� signals are really just continuous-
time signals that contain a series of �nite-width pulses. The height of each of these pulses is the amplitude
of the input signal at the beginning of the pulse. In other words, both the sampling action and the zero-
order-hold reconstruction are done at the same time; the discrete-time signal itself is never generated. This
means that the impulse-generator block is really a �pulse-generator�, or zero-order-hold device. Remember
that, in Simulink, frequency spectra are computed on continuous-time signals. This is why many aliased
components will appear in the spectra.

5 Sampling and Reconstruction Using An Impulse Generator

For help on the following topics select the corresponding links: simulink1 and printing �gures in simulink2.
For the following section, download the �le Lab4Utils.zip3.

In this section, we will experiment with the sampling and reconstruction of signals using a pulse generator.
This pulse generator is the combination of an ideal impulse generator and a perfect zero-order-hold device.

In order to run the experiment, �rst download the required Lab4Utilities4. Once Matlab is started, type
�Lab4�. A set of Simulink blocks and experiments will come up as shown in Figure 3.

1See the �le at <http://cnx.org/content/m18076/latest/simulink.pdf>
2See the �le at <http://cnx.org/content/m18076/latest/print.pdf>
3See the �le at <http://cnx.org/content/m18076/latest/Lab4Utils.zip>
4See the �le at <http://cnx.org/content/m18076/latest/Lab4Utils.zip>
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Figure 4: Simulink model for sampling and reconstruction using an impulse generator.

Before starting this experiment, use the MATLAB command close all to close all �gures other than
the Simulink windows. Double click on the icon named Sampling and Reconstruction Using An Impulse

Generator to bring up the �rst experiment as shown in Figure 4. In this experiment, a sine wave is sampled
at a frequency of 1 Hz; then the sampled discrete-time signal is used to generate rectangular impulses of
duration 0.3 sec and amplitude equal to the sample values. The block named Impulse Generator carries
out both the sampling of the sine wave and its reconstruction with pulses. A single Scope is used to plot
both the input and output of the impulse generator, and a Spectrum Analyzer is used to plot the output
pulse train and its spectrum.

First, run the simulation with the frequency of input sine wave set to 0.1 Hz (initial setting of the
experiment). Let the simulation run until it terminates to get an accurate plot of the output frequencies.
Then print the output of Scope and the Spectrum Analyzer. Be sure to label your plots.

INLAB REPORT: Submit the plot of the input/output signals and the plot of the output signal
and its frequency spectrum. On the plot of the spectrum of the reconstructed signal, circle the
aliases, i.e. the components that do NOT correspond to the input sine wave.

Ideal impulse functions can only be approximated. In the initial setup, the pulse width is 0.3 sec, which is
less then the sampling period of 1 sec. Try setting the pulse width to 0.1 sec and run the simulation. Print
the output of the Spectrum Analyzer.

INLAB REPORT: Submit the plot of the output frequency spectrum for a pulse width of 0.1
sec. Indicate on your plot what has changed and explain why.

Set the pulse width back to 0.3 sec and change the frequency of the sine wave to 0.8 Hz. Run the simulation
and print the output of the Scope and the Spectrum Analyzer.

INLAB REPORT: Submit the plot of the input/output signals and the plot of the output signal
and its frequency spectrum. On the frequency plot, label the frequency peak that corresponds to
the lowest frequency (the fundamental component) of the output signal. Explain why the lowest
frequency is no longer the same as the frequency of the input sinusoid.

http://cnx.org/content/m18076/1.3/



Connexions module: m18076 7

Leave the input frequency at 0.8 Hz. Now insert a �lter right after the impulse generator. Use a 10th
order Butterworth �lter with a cuto� frequency of 0.5 Hz. Connect the output of the �lter to the Spectrum
Analyzer and the Mux. Run the simulation, and print the output of Scope and the Spectrum Analyzer.

INLAB REPORT: Submit the plot of the input/output signals and the plot of the output signal
and its frequency spectrum. Explain why the output signal has the observed frequency spectrum.

6 Sampling and Reconstruction with Sample and Hold

For help on printing �gures in Simulink5 select the link.

Figure 5: Initial Simulink model for sampling and reconstruction using a sample-and-hold. This system

only measures the frequency response of the analog �lters.

In this section, we will sample a continuous-time signal using a sample-and-hold and then reconstruct it.
We already know that a sample-and-hold followed by a low-pass �lter does not result in perfect reconstruc-
tion. This is because a sample-and-hold acts like a pulse generator with a pulse duration of one sampling
period. This �pulse shape� of the sample-and-hold is what distorts the frequency spectrum (see Section
"Sampling and Reconstruction Using a Sample-and-Hold" (Section 3: Sampling and Reconstruction Using
Sample-and-Hold)).

To start the second experiment, double click on the icon named Sampling and Reconstruction Using

A Sample and Hold. Figure 5 shows the initial setup for this exercise. It contains 4 Scopes to monitor
the processing done in the sampling and reconstruction system. It also contains a Network Analyzer for
measuring the frequency response and the impulse response of the system.

The Network Analyzer works by generating a weighted chirp signal (shown on Scope 1) as an input to
the system-under-test. The frequency spectrum of this chirp signal is known. The analyzer then measures the
frequency content of the output signal (shown on Scope 4). The transfer function is formed by computing

5See the �le at <http://cnx.org/content/m18076/latest/print.pdf>

http://cnx.org/content/m18076/1.3/



Connexions module: m18076 8

the ratio of the output frequency spectrum to the input spectrum. The inverse Fourier transform of this
ratio, which is the impulse response of the system, is then computed.

In the initial setup, the Sample-and-Hold and Scope 3 are not connected. There is no sampling in this
system, just two cascaded low-pass �lters. Run the simulation and observe the signals on the Scopes. Wait
for the simulation to end.

INLAB REPORT: Submit the �gure containing plots of the magnitude response, the phase re-
sponse, and the impulse response of this system. Use the tall mode to obtain a larger printout by
typing orient('tall') directly before you print.

Double-click the Sample-and-Hold and set its Sample time to 1. Now, insert the Sample-and-Hold in
between the two �lters and connect Scope 3 to its output. Run the simulation and observe the signals on
the Scopes.

INLAB REPORT: Submit the �gure containing plots of the magnitude response, the phase
response, and the impulse response of this system. Explain the reason for the di�erence in the
shape of this magnitude response versus the previous magnitude response. Give an analytical

expression for the behavior of the magnitude plot for frequencies below 0.45 Hz.

7 Discrete-Time Interpolation

For help on printing �gures in Simulink6 select the link.

Figure 6: Simulink model for discrete-time interpolation.

In the previous experiments, we saw that the frequency content of a signal must be limited to half the
sampling rate in order to avoid aliasing e�ects in the reconstructed signal. However, reconstruction can be
di�cult if the sampling rate is chosen to be just above the Nyquist frequency. Reconstruction is much easier
for a higher sampling rate because the sampled signal will better �track� the original analog signal.

From another perspective, the analog output �lter must have a very sharp cuto� in order to accurately
reconstruct a signal that was sampled just above the Nyquist rate. Such �lters are di�cult and expensive
to manufacture. Alternatively, a higher sampling rate allows the use analog output �lters that have a slow
roll-o�. These �lters are much less expensive. However, a high sampling rate is not practical in most
applications, as it results in unnecessary samples and excessive storage requirements.

6See the �le at <http://cnx.org/content/m18076/latest/print.pdf>
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A practical solution to this dilemma is to interpolate the digital signal to create new (arti�cial) samples
between the existing samples. This may be done by �rst upsampling the digital representation, and then
�ltering out unwanted components using a discrete-time �lter. This discrete-time �lter serves the same
purpose as an analog �lter with a sharp cuto�, but it is generally simpler and more cost e�ective to implement.

Upsampling a signal by a factor of L is simply the process of inserting L−1 zeros in between each sample.
The frequency domain relationship between a signal x (n) and its upsampled version z (n) can be shown to
be the following

Z
(
ejω
)

= X
(
ejωL

)
. (11)

Therefore the DTFT of z (n) is simply X
(
ejω
)
compressed in frequency by a factor of L. Since X

(
ejω
)

has a period of 2π, Z
(
ejω
)
will have a period of 2π/L. All of the original information of x (n) will be

contained in the interval [−π/L, π/L] of Z
(
ejω
)
, and the new aliases that are created in the interval [−π, π]

are the unwanted components that need to be �ltered out. In the time domain, this �ltering has the e�ect
of changing the inserted zeros into arti�cial samples of x (n), commonly known as interpolated samples.

Figure 6 shows a Simulink model that demonstrates discrete-time interpolation. The interpolating system
contains three main components: an upsampler which inserts L − 1 zeros between each input sample, a
discrete-time low pass �lter which removes aliased signal components in the interpolated signal, and a gain
block to correct the magnitude of the �nal signal. Notice that "signal a" is the input discrete-time signal
while "signal c" is the �nal interpolated discrete-time signal.

Open the experiment by double clicking on the icon labeled Discrete Time Interpolator. The com-
ponents of the system are initially set to interpolate by a factor of 1. This means that the input and output
signals will be the same except for a delay. Run this model with the initial settings, and observe the signals
on the Scope.

Simulink represents any discrete-time signal by holding each sample value over a certain time period.
This representation is equivalent to a sample-and-hold reconstruction of the underlying discrete-time signal.
Therefore, a continuous-time Spectrum Analyzer may be used to view the frequency content of the output
"signal c". The Zero-Order Hold at the Gain output is required as a bu�er for the Spectrum Analyzer in
order to set its internal sampling period.

The lowest frequency component in the spectrum corresponds to the frequency content of the original
input signal, while the higher frequencies are aliased components resulting from the sample-and-hold recon-
struction. Notice that the aliased components of "signal c" appear at multiples of the sampling frequency
of 1 Hz. Print the output of the Spectrum Analyzer.

INLAB REPORT: Submit your plot of "signal c" and its frequency spectrum. Circle the aliased
components in your plot.

Next modify the system to upsample by a factor of 4 by setting this parameter in the Upsampler. You will
also need to set the Sample time of the DT �lter to 0.25. This e�ectively increases the sampling frequency of
the system to 4 Hz. Run the simulation again and observe the behavior of the system. Notice that zeros have
been inserted between samples of the input signal. After you get an accurate plot of the output frequency
spectrum, print the output of the Spectrum Analyzer.

Notice the new aliased components generated by the upsampler. Some of these spectral components lie
between the frequency of the original signal and the new sampling frequency, 4 Hz. These aliases are due to
the zeros that are inserted by the upsampler.

INLAB REPORT: Submit your plot of "signal c" and its frequency spectrum. On your frequency
plot, circle the �rst aliased component and label the value of its center frequency. Comment on the
shape of the envelope of the spectrum.

Notice in the previous Scope output that the process of upsampling causes a decrease in the energy of the
sample-and-hold representation by a factor of 4. This is the reason for using the Gain block.

http://cnx.org/content/m18076/1.3/
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Now determine the gain factor of the Gain block and the cuto� frequency of the Discrete-time LP

filter needed to produce the desired interpolated signal. Run the simulation and observe the behavior
of the system. After you get an accurate plot of the output frequency spectrum, print the output of the
Spectrum Analyzer. Identify the change in the location of the aliased components in the output signal.

INLAB REPORT: Submit your plot of "signal c" and its frequency spectrum. Give the values
of the cuto� frequency and gain that were used. On your frequency plot, circle the location of the
�rst aliased component. Explain why discrete-time interpolation is desirable before reconstructing
a sampled signal.

8 Discrete-Time Decimation

For the following section, download the �le music.au7. For help on how to load and play sudio signals8 select
the link.

In the previous section, we used interpolation to increase the sampling rate of a discrete-time signal.
However, we often have the opposite problem in which the desired sampling rate is lower than the sampling
rate of the available data. In this case, we must use a process called decimation to reduce the sampling
rate of the signal.

Decimating, or downsampling, a signal x (n) by a factor of D is the process of creating a new signal
y (n) by taking only every Dth sample of x (n). Therefore y (n) is simply x (Dn). The frequency domain
relationship between y (n) and x (n) can be shown to be the following:

Y
(
ejω
)

=
1
D

D−1∑
k=0

X

(
ω − 2πk

D

)
. (12)

Notice the similarity of (12) to the sampling theorem equation in (2). This similarity should be expected
because decimation is the process of sampling a discrete-time signal. In this case, Y

(
ejω
)
is formed by

taking X
(
ejω
)
in the interval [−π, π] and expanding it in frequency by a factor of D. Then it is repeated

in frequency every 2π, and scaled in amplitude by 1/D. For similar reasons as described for equation (2),
aliasing will be prevented if in the interval [−π, π], X

(
ejω
)
is zero outside the interval [−π/D, π/D]. Then

(12) simpli�es to

Y
(
ejω
)

=
1
D
X
(
ej

ω
D

)
for ω ∈ [−π, π] . (13)

A system for decimating a signal is shown in Figure 7. The signal is �rst �ltered using a low pass �lter with
a cuto� frequency of π/2 rad/sample. This insures that the signal is band limited so that the relationship
in (13) holds. The output of the �lter is then subsampled by removing every other sample.

Figure 7: This system decimates a discrete-time signal by a factor of 2.

7See the �le at <http://cnx.org/content/m18076/latest/music.au>
8See the �le at <http://cnx.org/content/m18076/latest/audio.pdf>
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For the following section download music.au9. Read in the signal contained in music.au using auread,
and then play it back with sound. The signal contained in music.au was sampled at 16 kHz, so it will sound
much too slow when played back at the default 8 kHz sampling rate.

To correct the sampling rate of the signal, form a new signal, sig1 , by selecting every other sample of
the music vector. Play the new signal using sound, and listen carefully to the new signal.

Next compute a second subsampled signal, sig2 , by �rst low pass �ltering the original music vector using
a discrete-time �lter of length 20, and with a cuto� frequency of π/2. Then decimate the �ltered signal by
2, and listen carefully to the new signal.

Hint: You can �lter the signal by using the Matlab command output = conv(s,h) , where s is
the signal, and h is the impulse response of the desired �lter. To design a length M low-pass �lter
with cuto� frequency W rad/sample, use the command h = fir1(M,W/pi) .

INLAB REPORT: Hand in the Matlab code for this exercise. Also, comment on the quality of the
audio signal generated by using the two decimation methods. Was there any noticeable distortion
in sig1? If so, describe the distortion.

9See the �le at <http://cnx.org/content/m18076/latest/music.au>
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