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1 Introduction

This is the �rst part of a two week laboratory in digital �lter design. The �rst week of the laboratory covers
some basic examples of FIR and IIR �lters, and then introduces the concepts of FIR �lter design. Then the
second week covers systematic methods of designing both FIR and IIR �lters.

2 Background on Digital Filters

In digital signal processing applications, it is often necessary to change the relative amplitudes of frequency
components or remove undesired frequencies of a signal. This process is called �ltering. Digital �lters are
used in a variety of applications. In Laboratory 4, we saw that digital �lters may be used in systems that
perform interpolation and decimation on discrete-time signals. Digital �lters are also used in audio systems
that allow the listener to adjust the bass (low-frequency energy) and the treble (high frequency energy) of
audio signals.

Digital �lter design requires the use of both frequency domain and time domain techniques. This is
because �lter design speci�cations are often given in the frequency domain, but �lters are usually implemented
in the time domain with a di�erence equation. Typically, frequency domain analysis is done using the Z-
transform and the discrete-time Fourier Transform (DTFT).

In general, a linear and time-invariant causal digital �lter with input x (n) and output y (n) may be
speci�ed by its di�erence equation

y (n) =
N−1∑
i=0

bix (n− i)−
M∑
k=1

aky (n− k) (1)

where bi and ak are coe�cients which parameterize the �lter. This �lter is said to have N zeros and M
poles. Each new value of the output signal, y (n), is determined by past values of the output, and by present
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and past values of the input. The impulse response, h (n), is the response of the �lter to an input of δ (n),
and is therefore the solution to the recursive di�erence equation

h (n) =
N−1∑
i=0

biδ (n− i)−
M∑
k=1

akh (n− k) . (2)

There are two general classes of digital �lters: in�nite impulse response (IIR) and �nite impulse response
(FIR). The FIR case occurs when ak = 0, for all k. Such a �lter is said to have no poles, only zeros. In this
case, the di�erence equation in (2) becomes

h (n) =
N−1∑
i=0

biδ (n− i) . (3)

Since (3) is no longer recursive, the impulse response has �nite duration N .
In the case where ak 6= 0, the di�erence equation usually represents an IIR �lter. In this case, (2) will

usually generate an impulse response which has non-zero values as n→∞. However, later we will see that
for certain values of ak 6= 0 and bi, it is possible to generate an FIR �lter response.

The Z-transform is the major tool used for analyzing the frequency response of �lters and their di�erence
equations. The Z-transform of a discrete-time signal, x (n), is given by

X (z) =
∞∑

n=−∞
x (n) z−n . (4)

where z is a complex variable. The DTFT may be thought of as a special case of the Z-transform where z
is evaluated on the unit circle in the complex plane.

X
(
ejω
)

= X (z)|z=ejω
=

∑∞
n=−∞ x (n) e−jωn

(5)

From the de�nition of the Z-transform, a change of variable m = n −K shows that a delay of K samples
in the time domain is equivalent to multiplication by z−K in the Z-transform domain.

x (n−K) Z↔
∑∞
n=−∞ x (n−K) z−n

=
∑∞
m=−∞ x (m) z−(m+K)

= z−K
∑∞
m=−∞ x (m) z−m

= z−KX (z)

(6)

We may use this fact to re-write (1) in the Z-transform domain, by taking Z-transforms of both sides of the
equation:

Y (z) =
∑N−1
i=0 biz

−iX (z)−
∑M
k=1 akz

−kY (z)

Y (z)
(
1 +

∑M
k=1 akz

−k
)

= X (z)
∑N−1
i=0 biz

−i

H (z)
4
= Y (z)

X(z) =
PN−1
i=0 biz

−i

1+
PM
k=1 akz

−k

(7)

From this formula, we see that any �lter which can be represented by a linear di�erence equation with
constant coe�cients has a rational transfer function (i.e. a transfer function which is a ratio of polynomials).
From this result, we may compute the frequency response of the �lter by evaluating H (z) on the unit circle:

H
(
ejω
)

=
∑N−1
i=0 bie

−jωi

1 +
∑M
k=1 ake

−jωk
. (8)
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There are many di�erent methods for implementing a general recursive di�erence equation of the form
(1). Depending on the application, some methods may be more robust to quantization error, require fewer
multiplies or adds, or require less memory. Figure 1 shows a system diagram known as the direct form
implementation; it works for any discrete-time �lter described by the di�erence equation in (1). Note that
the boxes containing the symbol z−1 represent unit delays, while a parameter written next to a signal path
represents multiplication by that parameter.

Figure 1: Direct form implementation for a discrete-time �lter described by a linear recursive di�erence

equation.

3 Design of a Simple FIR Filter

Download the �les, nspeech1.mat1 and DTFT.m2 for the following section.

1See the �le at <http://cnx.org/content/m18078/latest/nspeech1.mat>
2See the �le at <http://cnx.org/content/m18078/latest/DTFT.m>
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Figure 2: Location of two zeros for simple a FIR �lter.

To illustrate the use of zeros in �lter design, you will design a simple second order FIR �lter with the
two zeros on the unit circle as shown in Figure 2. In order for the �lter's impulse response to be real-valued,
the two zeros must be complex conjugates of one another:

z1 = ejθ (9)

z2 = e−jθ (10)

where θ is the angle of z1 relative to the positive real axis. We will see later that θ ∈ [0, π] may be interpreted
as the location of the zeros in the frequency response.

The transfer function for this �lter is given by

Hf (z) =
(
1− z1z−1

) (
1− z2z−1

)
=

(
1− ejθz−1

) (
1− e−jθz−1

)
= 1− 2cosθz−1 + z−2 .

(11)

Use this transfer function to determine the di�erence equation for this �lter. Then draw the corresponding
system diagram and compute the �lter's impulse response h (n).

This �lter is an FIR �lter because it has impulse response h (n) of �nite duration. Any �lter with only
zeros and no poles other than those at 0 and ±∞ is an FIR �lter. Zeros in the transfer function represent
frequencies that are not passed through the �lter. This can be useful for removing unwanted frequencies in
a signal. The fact that Hf (z) has zeros at e±jθ implies that Hf

(
e±jθ

)
= 0. This means that the �lter will

not pass pure sine waves at a frequency of ω = θ.
Use Matlab to compute and plot the magnitude of the �lter's frequency response |Hf

(
ejω
)
| as a function

of ω on the interval −π < ω < π, for the following three values of θ:

http://cnx.org/content/m18078/1.4/
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i):
θ = π/6 (12)

ii):
θ = π/3 (13)

ii):
θ = π/2 (14)

Put all three plots on the same �gure using the subplot command.

INLAB REPORT: Submit the di�erence equation, system diagram, and the analytical expression
of the impulse response for the �lter Hf (z). Also submit the plot of the magnitude response for
the three values of θ. Explain how the value of θ a�ects the magnitude of the �lter's frequency
response.

In the next experiment, we will use the �lter Hf (z) to remove an undesirable sinusoidal interference from
a speech signal. To run the experiment, �rst download the audio signal nspeech1.mat3, and the M-�le
DTFT.m4 Load nspeech1.mat into Matlab using the command load nspeech1. This will load the signal
nspeech1 into the workspace. Play nspeech1 using the sound command, and then plot 101 samples of the
signal for the time indices (100:200).

We will next use the DTFT command to compute samples of the DTFT of the audio signal. The DTFT

command has the syntax
[X,w]=DTFT(x,M)

where x is a signal which is assumed to start at time n = 0, and M speci�es the number of output
points of the DTFT. The command [X,w]=DTFT(x,0) will generate a DTFT that is the same duration as
the input; if this is not su�cient, it may be increased by specifying M . The outputs of the function are a
vector X containing the samples of the DTFT, and a vector w containing the corresponding frequencies of
these samples.

Compute the magnitude of the DTFT of 1001 samples of the audio signal for the time indices (100:1100).
Plot the magnitude of the DTFT samples versus frequency for |ω| < π. Notice that there are two large
peaks corresponding to the sinusoidal interference signal. Use the Matlab max command to determine the
exact frequency of the peaks. This will be the value of θ that we will use for �ltering with Hf (z).

Hint: Use the command [Xmax,Imax]=max(abs(X)) to �nd the value and index of the maximum
element in X . θ can be derived using this index.

Write a Matlab function FIRfilter(x) that implements the �lter Hf (z) with the measured value of θ and
outputs the �ltered signal (Hint: Use convolution). Apply the new function FIRfilter to the nspeech1

vector to attenuate the sinusoidal interference. Listen to the �ltered signal to hear the e�ects of the �lter.
Plot 101 samples of the signal for the time indices (100:200), and plot the magnitude of the DTFT of 1001
samples of the �ltered signal for the time indices (100:1100).
INLAB REPORT
For both the original audio signal and the �ltered output, hand in the following:

• The time domain plot of 101 samples.
• The plot of the magnitude of the DTFT for 1001 samples.

Also hand in the code for the FIRfilter �ltering function. Comment on how the frequency content of
the signal changed after �ltering. Is the �lter we used a lowpass, highpass, bandpass, or a bandstop �lter?
Comment on how the �ltering changed the quality of the audio signal.

3See the �le at <http://cnx.org/content/m18078/latest/nspeech1.mat>
4See the �le at <http://cnx.org/content/m18078/latest/DTFT.m>
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4 Design of A Simple IIR Filter

Download the �le pcm.mat5 for the following section.

Figure 3: Location of two poles for a simple IIR �lter.

While zeros attenuate a �ltered signal, poles amplify signals that are near their frequency. In this section,
we will illustrate how poles can be used to separate a narrow-band signal from adjacent noise. Such �lters are
commonly used to separate modulated signals from background noise in applications such as radio-frequency
demodulation.

Consider the following transfer function for a second order IIR �lter with complex-conjugate poles:

Hi (z) = 1−r
(1−rejθz−1)(1−re−jθz−1)

= 1−r
1−2rcos(θ)z−1+r2z−2

(15)

Figure 3 shows the locations of the two poles of this �lter. The poles have the form

p1 = rejθ p2 = re−jθ (16)

where r is the distance from the origin, and θ is the angle of p1 relative to the positive real axis. From the
theory of Z-transforms, we know that a causal �lter is stable if and only if its poles are located within the
unit circle. This implies that this �lter is stable if and only if |r| < 1. However, we will see that by locating
the poles close to the unit circle, the �lter's bandwidth may be made extremely narrow around θ.

This two-pole system is an example of an IIR �lter because its impulse response has in�nite duration.
Any �lter with nontrivial poles (not at z = 0 or ±∞) is an IIR �lter unless the poles are canceled by zeros.

Calculate the magnitude of the �lter's frequency response |Hi

(
ejw
)
| on |ω| < π for θ = π/3 and the

following three values of r.

5See the �le at <http://cnx.org/content/m18078/latest/pcm.mat>
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•
r = 0.99 (17)

•
r = 0.9 (18)

•
r = 0.7 (19)

Put all three plots on the same �gure using the subplot command.

INLAB REPORT: Submit the di�erence equation, system diagram and the analytical expression
of the impulse response for Hi (z). Also submit the plot of the magnitude of the frequency response
for each value of r. Explain how the value of r a�ects this magnitude.

In the following experiment, we will use the �lter Hi (z) to separate a modulated sinusoid from background
noise. To run the experiment, �rst download the �le pcm.mat6 and load it into the Matlab workspace using
the command load pcm . Play pcm using the sound command. Plot 101 samples of the signal for indices
(100:200), and then compute the magnitude of the DTFT of 1001 samples of pcm using the time indices
(100:1100). Plot the magnitude of the DTFT samples versus radial frequency for |ω| < π. The two peaks
in the spectrum correspond to the center frequency of the modulated signal. The low amplitude wideband
content is the background noise. In this exercise, you will use the IIR �lter described above to amplify the
desired signal, relative to the background noise.

The pcm signal is modulated at 3146Hz and sampled at 8kHz. Use these values to calculate the value of
θ for the �lter Hi (z). Remember from the sampling theorem that a radial frequency of 2π corresponds to
the sampling frequency.

Write a Matlab function IIRfilter(x) that implements the �lter Hi (z). In this case, you need to use
a for loop to implement the recursive di�erence equation. Use your calculated value of θ and r = 0.995.
You can assume that y(n) is equal to 0 for negative values of n. Apply the new command IIRfilter to
the signal pcm to separate the desired signal from the background noise, and listen to the �ltered signal to
hear the e�ects. Plot the �ltered signal for indices (100:200), and then compute the DTFT of 1001 samples
of the �ltered signal using the time indices (100:1100). Plot the magnitude of this DTFT. In order to see
the DTFT around ω = θ more clearly, plot also the portion of this DTFT for the values of ω in the range
[θ − 0.02, θ + 0.02]. Use your calculated value of θ.
INLAB REPORT
For both the pcm signal and the �ltered output, submit the following:

• The time domain plot of the signal for 101 points.
• The plot of the magnitude of the DTFT computed from 1001 samples of the signal.
• The plot of the magnitude of the DTFT for ω in the range [θ − 0.02, θ + 0.02].

Also hand in the code for the IIRfilter �ltering function. Comment on how the signal looks and sounds
before and after �ltering. How would you expect changes in r to change the �ltered output? Would a value
of r = 0.9999999 be e�ective for this application? Why might such a value for r be ill-advised? (Consider
the spectrum of the desired signal around ω = θ.)

6See the �le at <http://cnx.org/content/m18078/latest/pcm.mat>
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5 Lowpass Filter Design Parameters

Download the �le nspeech2.mat7 for the following section.

Figure 4: Tolerance speci�cations for the frequency response of a �lter.

Oftentimes it is necessary to design a good approximation to an ideal lowpass, highpass or bandpass
�lter. Figure 4 illustrates the typical characteristics of a real low-pass �lter. The frequencies |ω| < ωp are
known as the passband, and the frequencies ωs < |ω| ≤ π are the stopband. For any real �lter, ωp < ωs.
The range of frequencies ωp ≤ ω ≤ ωs is known as the transition band. The magnitude of the �lter response,
H
(
ejω
)
, is constrained in the passband and stopband by the following two equations

|H
(
ejω
)
− 1| ≤ δp for |ω| < ωp

|H
(
ejω
)
| ≤ δs for ωs < |ω| ≤ π

(20)

where δp and δs are known as the passband and stopband ripple respectively. Most lowpass �lter design
techniques depend on the speci�cation of these four parameters: ωp, ωs, δp, and δs.

7See the �le at <http://cnx.org/content/m18078/latest/nspeech2.mat>
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Figure 5: DTFT of a section of noisy speech.

To illustrate the selection of these parameters consider the problem of �ltering out background noise
from a speech signal. Figure 5 shows the magnitude of the DTFT over a window of such a signal, called
nspeech2. Notice that there are two main components in nspeech2: one at the low frequencies and one at
the high. The high frequency signal is noise, and it is band limited to |ω| > 2.2. The low frequency signal
is speech and it is band limited to |ω| < 1.8. Download the �le nspeech2.mat8. and load it into the Matlab
workspace. It contains the signal nspeech2 from Figure 5. Play the nspeech2 using the sound command
and note the quality of the speech and background noise.

In the following sections, we will compute low-pass �lters for separating the speech and noise using a
number of di�erent methods.

8See the �le at <http://cnx.org/content/m18078/latest/nspeech2.mat>
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5.1 Filter Design Using Truncation

Ideally, a low-pass �lter with cuto� frequency ωc should have a frequency response of

Hideal

(
ejw
)

= {
1 |ω| ≤ ωc
0 ωc < |ω| ≤ π

(21)

and a corresponding impulse response of

hideal (n) = ωc
π sinc

(
ωcn
π

)
for−∞ < n <∞ (22)

However, no real �lter can have this frequency response because hideal (n) is in�nite in duration.
One method for creating a realizable approximation to an ideal �lter is to truncate this impulse response

outside of n ∈ [−M,M ].

htrunc (n) = {
ωc
π sinc

(
ωc
π n
)

n = −M, ..., 0, 1, ...,M

0 otherwise
(23)

http://cnx.org/content/m18078/1.4/
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Figure 6: Frequency response of low-pass �lter designed using the truncation method.

Figure 6 shows the magnitude response of the lowpass �lter with cuto� frequency ωc = 2.0, with the
impulse response truncated to n ∈ [−10, 10]. Notice the oscillatory behavior of the magnitude response near
the cuto� frequency and the large amount of ripple in the stopband.

Due to the modulation property of the DTFT, the frequency response of the truncated �lter is the
result of convolving the magnitude response of the ideal �lter (a rect) with the DTFT of the truncating
window. The DTFT of the truncating window, shown in Figure 7, is similar to a sinc function since it is
the DTFT of a sampled rectangular window. Notice that this DTFT has very large sidelobes, which lead to
large stopband ripple in the �nal �lter.

http://cnx.org/content/m18078/1.4/
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Figure 7: DTFT of a rectangular window of size 21.

A truncated impulse response is of �nite duration, yet the �lter is still noncausal. In order to make the
FIR �lter causal, it must be shifted to the right by M units. For a �lter of size N = 2M +1 this shifted and
truncated �lter is given by

h (n) = {
ωc
π sinc

(
ωc
π

(
n− N−1

2

))
n = 0, 1, ..., N − 1

0 otherwise
. (24)

This time shift of (N − 1) /2 units to the right corresponds to multiplying the frequency response by
e−jω(N−1)/2. It does not a�ect the magnitude response of the �lter, but adds a factor of −jω (N − 1) /2 to
the phase response. Such a �lter is called linear phase because the phase is a linear function of ω.

It is interesting to see that the �lter formula of (24) is valid for N both even and odd. While both of
these �lters are linear phase, they have di�erent characteristics in the time domain. When N is odd, then
the value at n = (N − 1) /2 is sampled at the peak of the sinc function, but when N is even, then the two

http://cnx.org/content/m18078/1.4/
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values at n = N/2 and n = (N/2)− 1 straddle the peak.
To examine the e�ect of �lter size on the frequency characteristics of the �lter, write a Matlab function

LPFtrunc(N) that computes the truncated and shifted impulse response of size N for a low pass �lter with
a cuto� frequency of ωc = 2.0. For each of the following �lter sizes, plot the magnitude of the �lter's DTFT
in decibels. Hints: The magnitude of the response in decibels is given by |HdB

(
ejω
)
| = 20log10|H

(
ejω
)
|.

Note that the log command in Matlab computes the natural logarithm. Therefore, use the log10 command
to compute decibels. To get an accurate representation of the DTFT make sure that you compute at least
512 sample points using the command [X,w]=DTFT(filter_response,512) .

•
N = 21 (25)

•
N = 101 (26)

Now download the noisy speech signal nspeech2.mat9 , and load it into the Matlab workspace. Apply the
two �lters with the above sizes to this signal. Since these are FIR �lters, you can simply convolve them with
the audio signal. Listen carefully to the un�ltered and �ltered signals, and note the result. Can you hear
a di�erence between the two �ltered signals? In order to hear the �ltered signals better, you may want to
multiply each of them by 2 or 3 before using sound.
INLAB REPORT

• Submit the plots of the magnitude response for the two �lters (not in decibels). On each of the plots,
mark the passband, the transition band and the stopband.

• Submit the plots of the magnitude response in decibels for the two �lters.
• Explain how the �lter size e�ects the stopband ripple. Why does it have this e�ect?
• Comment on the quality of the �ltered signals. Does the �lter size have a noticeable e�ect on the audio

quality?

9See the �le at <http://cnx.org/content/m18078/latest/nspeech2.mat>
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