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Lab 5b - Digital Filter Design (part 2)

Summary





 Questions or comments concerning
this laboratory should be directed
to Prof. Charles A. Bouman, School of Electrical and Computer
Engineering, Purdue University, West Lafayette IN 47907;
(765) 494-0340; bouman@ecn.purdue.edu
1. Introduction



 This is the second part of a two week laboratory in digital
filter design.
The first week


of the laboratory covered some basic examples
of FIR and IIR filters, and then introduced the concepts
of filter design.
In this week we will cover more
systematic methods of designing both FIR and IIR filters.

2. Filter Design Using Standard Windows



 Download 
DTFT.m for the following section.






 We can generalize the idea of truncation by using
different windowing functions to truncate an
ideal filter's impulse response. Note that by simply
truncating the ideal filter's impulse response, we are actually
multiplying (or “windowing”) the impulse response by
a shifted 
            r
            e
            c
            t() function. This particular
type of window is called a rectangular window.
In general, the impulse reponse 
            h(n) of the designed filter
is related to the impulse response 
            h
            
               ideal
            (n) of the ideal filter
by the relation
(1)
          
            h
            
              (
              n
              )
            
             = 
            w
            
              (
              n
              )
            
            h
            
               ideal
            
            
              (
              n
              )
            
            ,
          
        
 where 
            w(n) is an 
            N
         -point window. We assume that
(2)

 where 
            ω
            
               c
            
          is the cutoff frequency and 
            N
          is the desired
window length.
 The rectangular window is defined as
(3)

 The DTFT of 
            w(n) for 
            N = 21 is shown in Figure 1.
The rectangular window is usually not preferred
because it leads to the large stopband and passband ripple as
shown in Figure 2.
 Figure 1. 
 [image: Figure (trunc.png)]
DTFT of a rectangular window of length 21.



 Figure 2. 
 [image: Figure (truncLPF.png)]
Frequency response of low-pass filter, designed using
the truncation method.



 More desirable frequency characteristics can be obtained by making a better
selection for the window, 
            w(n).
In fact, a variety of raised cosine windows
are widely used for this purpose.
Some popular windows are listed below.
 	 Hanning window (as defined in Matlab, command hann(N)):

(4)


            

	 Hamming window

(5)


            

	 Blackman window

(6)


            



 In filter design using different truncation windows, there are two key
frequency domain effects that are important to the design: the transition
band roll-off, and the passband and stopband ripple (see
Figure 3 below).
There are two corresponding parameters in the spectrum of each type of
window that
influence these filter parameters. The filter's roll-off is related to
the width of center lobe of the window's magnitude spectrum. The
ripple
is influenced by the ratio of the mainlobe amplitude to the first sidelobe
amplitude (or difference if using a dB scale).
These two window spectrum parameters are
not independent, and you should see a trend as you examine the
spectra for different windows.
The theoretical values for the mainlobe width and
the peak-to-sidelobe amplitude are shown in Table 1.
Table 1. Approximate spectral parameters of truncation windows.
See reference [1].	Window (length N)	Mainlobe width	Peak-to-sidelobe amplitude (dB)
	
                     
                        Rectangular
                     
                  	
                     
                  
                    4
                    π
                     / 
                    N
                  
                     
                  	
                     
                  
                     – 
                    13
                    d
                        B
                  
                     
                  
	
                     
                        Hanning
                     
                  	
                     
                  
                    8
                    π
                     / 
                    N
                  
                     
                  	
                     
                  
                     – 
                    32
                    d
                        B
                  
                     
                  
	
                     
                        Hamming
                     
                  	
                     
                  
                    8
                    π
                     / 
                    N
                  
                     
                  	
                     
                  
                     – 
                    43
                    d
                        B
                  
                     
                  
	
                     
                        Blackman
                     
                  	
                     
                  
                    12
                    π
                     / 
                    N
                  
                     
                  	
                     
                  
                     – 
                    58
                    d
                        B
                  
                     
                  


 Plot the rectangular, Hamming, Hanning, and Blackman window functions
of length 21 on a single figure using the subplot command.
You may use the Matlab commands hamming,
hann, and blackman.
Then compute and plot the DTFT magnitude of each of the four windows.
Plot the magnitudes on a decibel scale
(i.e., plot ). Download and use the function

DTFT.m

 to compute the DTFT.
 Note

Use at least 512 sample points in computing the DTFT by
typing the command DTFT(window,512). Type help DTFT for
further information on this function.


 Measure the null-to-null mainlobe width (in rad/sample)
and the peak-to-sidelobe amplitude (in dB)
from the logarithmic magnitude response plot
for each window type. The Matlab command zoom is helpful for this.
Make a table with these values and
the theoretical ones.
 Now use a Hamming window to design a lowpass
filter 
            h(n) with a cutoff frequency of 
            ω
            
               c
             = 2.0
and length 21. Note:
 You need to use Equation 1 and
Equation 2 for this design. In the same figure, plot the filter's
impulse response, and the magnitude of the filter's DTFT in decibels.
 
INLAB REPORT


            
 	 
Submit the figure containing the time domain plots of the four windows.


	 Submit the figure containing the DTFT (in decibels) of the four windows.


	 Submit the table of the measured and theoretical window spectrum
parameters.
Comment on how close the experimental
results matched the ideal values. Also comment
on the relation between the width of the mainlobe
and the peak-to-sidelobe amplitude.


	 Submit the plots of your designed filter's impulse response and
the magnitude of the filter's DTFT.





         

3. Filter Design Using the Kaiser Window



 Download 
nspeech2.mat for the following section.







 Figure 3. 
 [image: Figure (filtspec.png)]
Tolerance specifications for the frequency response of a filter.



 The standard windows of the "Filter Design Using Standard Windows" section are an
improvement over simple truncation,
but these windows still do not allow for arbitrary choices
of transition bandwidth and ripple.
In 1964, James Kaiser derived a family of near-optimal windows that can be used
to design filters which meet or exceed any filter specification.
The Kaiser window depends on two parameters: the window length 
            N
         , and
a parameter 
            β
          which controls the shape of the window.
Large values of 
            β
          reduce the window sidelobes and therefore
result in reduced passband and stopband ripple.
The only restriction in the Kaiser filter design method is
that the passband and stopband ripple must be equal in magnitude.
Therefore, the Kaiser filter must be designed to meet the smaller
of the two ripple constraints:
(7)

 The Kaiser window function of length 
            N
          is given by
(8)

 where 
            I
            0( · ) is the zero'th order modified Bessel function
of the first kind, 
            N
          is the length of the window, and

            β
          is the shape parameter.
 Kaiser found that values of 
            β
          and 
            N
         
could be chosen to meet any set of design parameters,
, by defining

            A =  – 20log10
            δ
          and using the following two equations:
(9)

(10)

 where ⌈ · ⌉ is the ceiling function,
i.e. ⌈x⌉ is the smallest integer which is greater than
or equal to 
            x
         .
 To further investigate the Kaiser window, plot the Kaiser
windows and their DTFT magnitudes (in dB)
for 
            N = 21 and the following values of 
            β
         :
 	 
               
(11)
              
                     β
                 = 
                0
              
            

            

	 
               
(12)
              
                     β
                 = 
                1
              
            

            

	 
               
(13)
              
                     β
                 = 
                5
              
            

            



 For each case use at least 512 points in the plot of the DTFT.
 Hint
 
 To create the
Kaiser windows, use the Matlab command
kaiser(N,beta)
 command where N
is the length of the filter and beta
 is the shape parameter 
               β
            .
To insure at least 512 points in the plot use the command
DTFT(window,512)
 when computing the DTFT.

 INLAB REPORT


Submit the plots of the 3 Kaiser windows
and the magnitude of their DTFT's in decibels.
Comment on how the value 
               β
             affects the shape of the window
and the sidelobes of the DTFT.



 Figure 4. 
 [image: Figure (speechspec.png)]
DTFT of a section of noisy speech.



 Next use a Kaiser window to design a low pass filter, 
            h(n),
to remove the noise from the signal in

nspeech2.mat


using equations
Equation 1 and Equation 2.
To do this, use equations Equation 9 and Equation 10 to
compute the values of 
            β
          and 
            N
         
that will yield the following design specifications:
(14)

 The low pass filter designed with the Kaiser method
will automatically have a cut-off
frequency centered between 
            ω
            
               p
            
          and 
            ω
            
               s
            
         .
(15)

 Plot the magnitude of the DTFT of 
            h(n)
for |ω| < π
          .
Create three plots in the same figure:
one that shows the entire frequency response, and ones that zoom in on the
passband and stopband ripple, respectively.
Mark 
            ω
            
               p
            
         , 
            ω
            
               s
            
         , 
            δ
            
               p
            
         , and 
            δ
            
               s
            
         
on these plots where appropriate.
Note:
 Since the ripple is measured on a magnitude scale,
DO NOT use a decibel scale on this set of plots.
 From the Matlab prompt, compute the stopband and passband ripple (do not do
this graphically). Record the stopband and passband ripple to
three decimal places.
 Hint

To compute the passband ripple, find the value of the DTFT at frequencies corresponding
to the passband using the command H(abs(w)<=1.8)
where H is the DTFT of 
               h(n) and w is the corresponding vector
of frequencies. Then use this vector to compute the passband ripple.
Use a similar procedure for the stopband ripple.

 Filter the noisy speech signal in

nspeech2.mat


using the filter you have designed.
Then compute the
DTFT of 400 samples of the filtered signal starting
at time 
            n = 20000 (i.e. 20001:20400
).
Plot the magnitude of the DTFT samples in decibels
versus frequency in radians for |ω| < π
         .
Compare this with the spectrum of the noisy speech signal shown
in Figure 4.
Play the noisy and filtered speech signals back using
sound and listen to them carefully.
 
INLAB REPORT


Do the following:

 	 
Submit the values of 
                        β
                      and 
                        N
                      that you computed.


	 Submit the three plots of the filter's magnitude response. Make sure
the plots are labeled.


	 Submit the values of the passband and stopband ripple.
Does this filter meet the design specifications?


	 Submit the magnitude plot of the DTFT in dB
for the filtered signal.
Compare this plot to the plot of Figure 4.


	 Comment on how the frequency content and the
audio quality of the filtered signal have changed after
filtering.





         

4. FIR Filter Design Using Parks-McClellan Algorithm



 Click here for help
on the firpm function for Parks-McClellan filter design.

Download the data file nspeech2.mat for the following section.







 Kaiser windows are versatile since they allow the design of arbitrary
filters which meet specific design constraints.
However, filters designed with Kaiser windows still
have a number of disadvantages. For example,
 	 Kaiser filters are not guaranteed to be the minimum
length filter which meets the design constraints.


	 Kaiser filters do not allow passband and stopband ripple
to be varied independently.




 Minimizing filter length is important because
in many applications the length of the filter determines
the amount of computation.
For example, an FIR filter of length 
            N
         
may be directly implemented in the time domain
by evaluating the expression
(16)

 For each output value 
            y(n) this expression requires 
            N
          multiplies
and 
            N – 1 additions.
 Oftentimes 
            h(n) is a symmetric filter so that 
            h(n) = h(N – 1 – n).
If the filter 
            h(n) is symmetric and 
            N
          is even,
then Equation 16 may be more efficiently computed as
(17)

 This strategy reduces the computation to 
            N / 2 multiplies
and 
            N – 1 adds for any value of 
            N
         
         [1].
Note that the computational effort is linearly proportional to the length
of the filter.
 The Kaiser filters do not guarantee the minimum possible filter length.
Since the filter has equal passband
and stopband ripple, it will usually exceed design requirements
in one of the two bands; this results in an unnecessarily long filter.
A better design would allow the stopband and passband
constraints to be specified separately.
 In 1972, Parks and McClellan devised a methodology
for designing symmetric filters that minimize filter length
for a particular set of design constraints
{
            ω
            
               p
            
         , 
            ω
            
               s
            
         , 
            δ
            
               p
            
         , 
            δ
            
               s
            
         }.
The resulting filters minimize
the maximum error between the desired frequency response
and the actual frequency response
by spreading the approximation error uniformly
over each band.
The Parks and McClellan algorithm makes use
of the Remez exchange algorithm and Chebyshev approximation theory.
Such filters that exhibit equiripple behavior
in both the passband and the stopband, and are sometimes called
equiripple filters.
 As with Kaiser filters, designing a filter with the Parks and McClellan
algorithm is a two step process.
First the length (i.e. order) of the filter must be computed
based on the design constraints.
Then the optimal filter for a specified length can be determined.
As with Kaiser windows, the filter length computation is approximate
so the resulting filter may exceed or violate the design constraints.
This is generally not a problem since the filter can
be redesigned for different lengths until the constraints
are just met.
 The Matlab command for computing the approximate filter length
is
 
         [n,fo,mo,w] = firpmord(f,m,ripple,2*pi)
      
 where the inputs are:
 	 
            f
 - vector containing an even number
of band edge frequencies. For a simple low pass filter,
f=[wp,ws]
, where wp
 and ws

are the passband and stopband frequencies, respectively.

	 
            m
 - vector containing the ideal filter magnitudes
of the filter in each band. For a simple low pass filter
m=[1,0]
.

	 
            ripple
 - vector containing the allowed ripple in
each band. For a simple low pass filter
ripple=[delta_p,delta_s]
, where
delta_p
 and delta_s
 are the passband and stopband
ripples, respectively.

	 
            2*pi
 - value, in radians, that corresponds to the
sampling frequency.


 The outputs of the command are n = filter length - 1
,
and the vectors fo
, mo
, and w
 which are
intermediate filter parameters.
 Once the filter length, n
, is obtained,
the Matlab command for designing a Parks-McClellan filter
is b = firpm(n,fo,mo,w)
.
The inputs n
, fo
, mo
, and w
 are the
corresponding outputs of firpmord,
and the output b is a vector of FIR filter coefficients
such that
(18)
          
            H
            
              (
              z
              )
            
             = 
            b
            
              (
              1
              )
            
             + 
            b
            
              (
              2
              )
            
            z
            
                 – 
                1
              
             + 
            ⋯
             + 
            b
            
              (
              n
               + 
              1
              )
            
            z
            
                 – 
                n
              
          
        
 (What is the impulse response of this filter?)
 
For further information, read the help document on using Matlab to implement the Parks-McClellan algorithm.
 Now design a symmetric FIR filter using firpmord and firpm
in Matlab to meet the design specifications
given in the "Filter Design Using the Kaiser Window"
section.
Compute the DTFT of the filter's response for at least 512 points,
and use this result to
compute the passband and stopband ripple of the filter that was designed.
Adjust the filter length until the minimum order which
meets the design constraints is found.
Plot the magnitude of the DTFT in dB of the final filter design.
 
INLAB REPORT


 Do the following:

 	 
Submit the final measured values of filter length, passband ripple,
and stopband ripple.
How accurate was the filter order computation using Matlab's
firpmord?
How does the length of this filter compare to the filter
designed using a Kaiser window?


	 Submit the plot of the filter's DTFT.
How does the frequency response of the Parks-McClellan filter
compare to the filter designed using the Kaiser window?
Comment on the shape of both the passband and stopband.





         
 Use the filter you have designed to remove the noise
from the signal
nspeech2.mat

.
Play the noisy and filtered speech signals back using
sound and listen to them carefully.
Compute the
DTFT of 400 samples of the filtered signal starting
at time 
            n = 20,001 (i.e. 20001:20400
).
Plot the magnitude of the DTFT in decibels versus frequency
in radians for |ω| < π
         .
Compare this with the spectrum of the noisy speech signal shown
in Figure 4, and also with
the magnitude of the DTFT of the Kaiser filtered signal.
 INLAB REPORT

 Submit the plot of the DTFT magnitude for the filtered signal.
Comment on how the audio quality
of the signal changes after filtering. Also comment on any
differences in audio quality between the Parks-McClellan filtered
speech and the Kaiser filtered speech.




5. Design of Discrete-Time IIR Filters
Using Numerical Optimization



 In this section, we consider the design of discrete-time IIR filters
through the direct search of filter parameters
that will minimize a specific design criterion.
Such “brute force” approaches to filter design have become
increasingly more popular due to the wide availability of high
speed computers and robust numerical optimization methods.
 Typically, numerical approaches to filter design have two parts.
First, they design a cost, or error criterion.
This criterion is a measure of the difference between
the ideal filter response and the response of the
computed or “approximate” filter. The goal is to find
the approximate filter with the lowest cost (error). Mean square error is
a popular cost criterion. The second part is to minimize
the cost with respect to the filter parameters.
We will perform the required numerical optimization with the
fminsearch function in Matlab's Optimization Toolbox.
 In order to formulate a cost criterion,
we must first select a model for the
discrete-time filter of interest.
There are many ways of doing this, but we will use
the coefficients of a rational transfer function
to model (or parameterize) the set of second order IIR filters.
In this case, the elements of the vector

are the coefficients of the transfer function
(19)

 Using this parameterization, we may then define
a function Cost(θ) which is the “cost”
of using the filter 
            H
            
               θ
            (z).
 To illustrate this numerical optimization approach,
we will design a digital filter that compensates for the roll-off
due to the sample-and-hold process in an audio CD player.
In lab 4, we saw that the sample-and-hold operation in a conventional
D/A converter causes the
reconstructed signal to be filtered by the function
(20)

 One method of reducing this distortion is to digitally “pre-filter”
a signal with
the inverse transfer function, 1 / H
            
               sh
            
         .
This filter 1 / H
            
               sh
            
          pre-distorts the audio signal so the reconstructed
signal has the desired frequency response.
We would like to approximate the filter 1 / H
            
               sh
            
          using
the second order filter of Equation 19.
 For an audio CD player, the magnitude of the frequency response
is generally considered to be more important than the phase. This is
because we are not perceptually sensitive to phase distortion in sound.
Therefore, we may choose a cost function which computes the total squared
error between the magnitudes of the desired pre-filter response,
, and the second order filter
:
(21)

 The 
            θ
          parameters that minimize this cost function will be
the parameters of our designed filter.
A more complex approach might also account for the filter phase,
but for simplicity we will only try to match the filter magnitudes.
 After the filter is designed, we may compute the difference between
the CD player's frequency response in dB and the ideal desired response
in dB that the CD player should have:
(22)

 where 
            θ
             * 
          is the optimized value of 
            θ
          and
 is the optimum second-order filter.
 Do the following to perform this filter design:
 	 Write a Matlab function prefilter(w,theta)

which computes the frequency response 
from equation Equation 19
for the vector of input frequencies
w
 and the parameter vector theta.


	 Write a Matlab function Cost(theta)
 which computes the
total squared error of equation Equation 21. Use a sampling interval

                  Δ
                  ω = 0.01 for the functions  and
.


	 Use the command fminsearch
 from Matlab's Optimization
Toolbox to compute the value of the parameter 
                  θ
                which
minimizes Cost(theta).

 The function fminsearch
 has the syntax
X = fminsearch('function_name',initial_value)
 where
function_name
 is the name of the function being minimized
(Cost), initial_value
 is the starting value for the unknown
parameter, and X is the minimizing parameter vector.
Choose an initial value of

so that .


	 Use the subplot command to plot the following three functions
on the interval [ – π,π].

 	 The desired filter magnitude response .


	 The designed IIR filter magnitude
response .


	 The error in decibels, from equation Equation 22.





            



 
INLAB REPORT


 Do the following:

 	 
Submit the printouts of the code for the two Matlab functions
prefilter.m and Cost.m.


	 Give an analytical expression for the optimized transfer function

                        H
                        
                           θ
                            * 
                        (z) with the coefficients that were computed.


	 Submit the three plots. On the error plot, mark the frequency ranges
where the approximation error is high.





         

6. References
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[1] The advantages of using such
symmetries varies considerably with the implementation and
application. On many modern computing architectures
the computational cost of adds and multiplies are similar,
and the overhead of control loops may eliminate the advantages
of reduced operations.
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