
Connexions module: m18085 1

Lab 8 - Number Representation and

Quantization
∗

Charles A. Bouman

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

1 Introduction

This lab presents two important concepts for working with digital signals. The �rst section discusses how
numbers are stored in memory. Numbers may be either in �xed point or �oating point format. Integers
are often represented with �xed point format. Decimals, and numbers that may take on a very large range
of values would use �oating point. The second issue of numeric storage is quantization. All analog signals
that are processed on the computer must �rst be quantized. We will examine the errors that arise from
this operation, and determine how di�erent levels of quantization a�ect a signal's quality. We will also look
at two types of quantizers. The uniform quantizer is the simpler of the two. The Max quantizer, is
optimal in that it minimizes the mean square error between the original and quantized signals.

2 Review of number representations

There are two types of numbers that a computer can represent: integers and decimals. These two numbers
are stored quite di�erently in memory. Integers (e.g. 27, 0, -986) are usually stored in �xed point format,
while decimals (e.g. 12.34, -0.98) most often use �oating point format. Most integer representations use four
bytes of memory; �oating point values usually require eight.

There are di�erent conventions for encoding �xed point binary numbers because of the di�erent ways of
representing negative numbers. Three types of �xed point formats that accommodate negative integers are
sign-magnitude, one's-complement, and two's-complement. In all three of these "signed" formats,
the �rst bit denotes the sign of the number: 0 for positive, and 1 for negative. For positive numbers, the
magnitude simply follows the �rst bit. Negative numbers are handled di�erently for each format.

Of course, there is also an unsigned data type which can be used when the numbers are known to be
non-negative. This allows a greater range of possible numbers since a bit isn't wasted on the negative sign.

2.1 Sign-magnitude representation

Sign-magnitude notation is the simplest way to represent negative numbers. The magnitude of the negative
number follows the �rst bit. If an integer was stored as one byte, the range of possible numbers would be
-127 to 127.
∗Version 1.3: Sep 17, 2009 2:45 pm -0500
†http://creativecommons.org/licenses/by/2.0/

http://cnx.org/content/m18085/1.3/



Connexions module: m18085 2

The value +27 would be represented as
0 0 0 1 1 0 1 1 .
The number -27 would represented as
1 0 0 1 1 0 1 1 .

2.2 One's-complement

To represent a negative number, the complement of the bits for the positive number with the same magnitude
are computed. The positive number 27 in one's-complement form would be written as

0 0 0 1 1 0 1 1 ,
but the value -27 would be represented as
1 1 1 0 0 1 0 0 .

2.3 Two's-complement

The problem with each of the above notations is that two di�erent values represent zero. Two's-complement
notation is a revision to one's-complement that solves this problem. To form negative numbers, the positive
number is subtracted from a certain binary number. This number has a one in the most signi�cant bit
(MSB), followed by as many zeros as there are bits in the representation. If 27 was represented by an
eight-bit integer, -27 would be represented as:

1 0 0 0 0 0 0 0 0

- 0 0 0 1 1 0 1 1

= 1 1 1 0 0 1 0 1

Notice that this result is one plus the one's-complement representation for -27 (modulo-2 addition). What
about the second value of 0? That representation is

1 0 0 0 0 0 0 0 .
This value equals -128 in two's-complement notation!

1 0 0 0 0 0 0 0 0

- 1 0 0 0 0 0 0 0

= 1 0 0 0 0 0 0 0

The value represented here is -128; we know it is negative, because the result has a 1 in the MSB. Two's-
complement is used because it can represent one extra negative value. More importantly, if the sum of a
series of two's-complement numbers is within the range, over�ows that occur during the summation will not
a�ect the �nal answer! The range of an 8-bit two's complement integer is [-128,127].

2.4 Floating Point

Floating point notation is used to represent a much wider range of numbers. The tradeo� is that the
resolution is variable: it decreases as the magnitude of the number increases. In the �xed point examples
above, the resolution was �xed at 1. It is possible to represent decimals with �xed point notation, but for a
�xed word length any increase in resolution is matched by a decrease in the range of possible values.

A �oating point number, F, has two parts: a mantissa, M, and an exponent, E.

F = M ∗ 2E (1)

The mantissa is a signed fraction, which has a power of two in the denominator. The exponent is a signed
integer, which represents the power of two that the mantissa must be multiplied by. These signed numbers
may be represented with any of the three �xed-point number formats. The IEEE has a standard for �oating
point numbers (IEEE 754). For a 32-bit number, the �rst bit is the mantissa's sign. The exponent takes up

http://cnx.org/content/m18085/1.3/



Connexions module: m18085 3

the next 8 bits (1 for the sign, 7 for the quantity), and the mantissa is contained in the remaining 23 bits.
The range of values for this number is (−1.18 ∗ 10−38, 3.40 ∗ 1038).

To add two �oating point numbers, the exponents must be the same. If the exponents are di�erent, the
mantissa is adjusted until the exponents match. If a very small number is added to a large one, the result
may be the same as the large number! For instance, if 0.15600 · · · 0 ∗ 230 is added to 0.62500 · · · 0 ∗ 2−3, the
second number would be converted to 0.0000 · · · 0 ∗ 230 before addition. Since the mantissa only holds 23
binary digits, the decimal digits 625 would be lost in the conversion. In short, the second number is rounded
down to zero. For multiplication, the two exponents are added and the mantissas multiplied.

3 Quantization

3.1 Introduction

Quantization is the act of rounding o� the value of a signal or quantity to certain discrete levels. For example,
digital scales may round o� weight to the nearest gram. Analog voltage signals in a control system may
be rounded o� to the nearest volt before they enter a digital controller. Generally, all numbers need to be
quantized before they can be represented in a computer.

Digital images are also quantized. The gray levels in a black and white photograph must be quantized
in order to store an image in a computer. The �brightness" of the photo at each pixel is assigned an integer
value between 0 and 255 (typically), where 0 corresponds to black, and 255 to white. Since an 8-bit number
can represent 256 di�erent values, such an image is called an �8-bit grayscale" image. An image which is
quantized to just 1 bit per pixel (in other words only black and white pixels) is called a halftone image.
Many printers work by placing, or not placing, a spot of colorant on the paper at each point. To accommodate
this, an image must be halftoned before it is printed.

Quantization can be thought of as a functional mapping y = f (x) of a real-valued input to a discrete-
valued output. An example of a quantization function is shown in Figure 1, where the x-axis is the input
value, and the y-axis is the quantized output value.

http://cnx.org/content/m18085/1.3/



Connexions module: m18085 4

Figure 1: Input-output relation for a 7-level uniform quantizer.

3.2 Quantization and Compression

Quantization is sometimes used for compression. As an example, suppose we have a digital image which is
represented by 8 di�erent gray levels: [0 31 63 95 159 191 223 255]. To directly store each of the image values,
we need at least 8-bits for each pixel since the values range from 0 to 255. However, since the image only
takes on 8 di�erent values, we can assign a di�erent 3-bit integer (a code) to represent each pixel: [000 001
... 111]. Then, instead of storing the actual gray levels, we can store the 3-bit code for each pixel. A look-up
table, possibly stored at the beginning of the �le, would be used to decode the image. This lowers the cost
of an image considerably: less hard drive space is needed, and less bandwidth is required to transmit the
image (i.e. it downloads quicker). In practice, there are much more sophisticated methods of compressing
images which rely on quantization.

3.3 Image Quantization

Download the �le fountainbw.tif1 for the following section.
The image in fountainbw.tif is an 8-bit grayscale image. We will investigate what happens when we

quantize it to fewer bits per pixel (b/pel). Load it into Matlab and display it using the following sequence
of commands:

y = imread('fountainbw.tif');

1See the �le at <http://cnx.org/content/m18085/latest/fountainbw.tif>

http://cnx.org/content/m18085/1.3/



Connexions module: m18085 5

image(y);

colormap(gray(256));

axis('image');

The image array will initially be of type uint8, so you will need to convert the image matrix to type
double before performing any computation. Use the command z=double(y) for this.

There is an easy way to uniformly quantize a signal. Let

∆ =
Max (X)−Min (X)

N − 1
(2)

where X is the signal to be quantized, and N is the number of quantization levels. To force the data to have
a uniform quantization step of ∆,

• Subtract Min(X) from the data and divide the result by ∆.
• Round the data to the nearest integer.
• Multiply the rounded data by ∆ and add Min(X) to convert the data back to its original scale.

Write a Matlab function Y = Uquant(X,N) which will uniformly quantize an input array X (either a vector
or a matrix) to N discrete levels. Use this function to quantize the fountain image to 7 b/pel, 6, 5, 4, 3, 2,
1 b/pel, and observe the output images.

note: Remember that with b bits, we can represent N = 2b gray levels.

Print hard copies of only the 7, 4, 2, and 1 b/pel images, as well as the original.
INLAB REPORT

1. Describe the artifacts (errors) that appear in the image as the number of bits is lowered?
2. Note the number of b/pel at which the image quality noticeably deteriorates.
3. Hand in the printouts of the above four quantized images and the original.
4. Compare each of these four quantized images to the original.

3.4 Audio Quantization

Download the �les speech.au2 and music.au3 for the following section.
If an audio signal is to be coded, either for compression or for digital transmission, it must undergo some

form of quantization. Most often, a general technique known as vector quantization is employed for this
task, but this technique must be tailored to the speci�c application so it will not be addressed here. In this
exercise, we will observe the e�ect of uniformly quantizing the samples of two audio signals.

Down load the audio �les speech.au4 and music.au5 . Use your Uquant function to quantize each of these
signals to 7, 4, 2 and 1 bits/sample. Listen to the original and quantized signals and answer the following
questions:

• For each signal, describe the change in quality as the number of b/sample is reduced?
• For each signal, is there a point at which the signal quality deteriorates drastically? At what point (if

any) does it become incomprehensible?
• Which signal's quality deteriorates faster as the number of levels decreases?
• Do you think 4 b/sample is acceptable for telephone systems? ... 2 b/sample?

Use subplot to plot in the same �gure, the four quantized speech signals over the index range 7201:7400.
Generate a similar �gure for the music signal, using the same indices. Make sure to use orient tall before
printing these out.

INLAB REPORT: Hand in answers to the above questions, and the two Matlab �gures.

2See the �le at <http://cnx.org/content/m18085/latest/speech.au>
3See the �le at <http://cnx.org/content/m18085/latest/music.au>
4See the �le at <http://cnx.org/content/m18085/latest/speech.au>
5See the �le at <http://cnx.org/content/m18085/latest/music.au>

http://cnx.org/content/m18085/1.3/



Connexions module: m18085 6

3.4.1 Error Analysis

As we have clearly observed, quantization produces errors in a signal. The most e�ective methods for analysis
of the error turn out to be probabilistic. In order to apply these methods, however, one needs to have a
clear understanding of the error signal's statistical properties. For example, can we assume that the error
signal is white noise? Can we assume that it is uncorrelated with the quantized signal? As you will see
in this exercise, both of these are good assumptions if the quantization intervals are small compared with
sample-to-sample variations in the signal.

If the original signal is X, and the quantized signal is Y , the error signal is de�ned by the following:

E = Y −X (3)

Compute the error signal for the quantized speech for 7, 4, 2 and 1 b/sample.
When the spacing, ∆, between quantization levels is su�ciently small, a common statistical model for the

error is a uniform distribution from −∆
2 to ∆

2 . Use the command hist(E,20) to generate 20-bin histograms
for each of the four error signals. Use subplot to place the four histograms in the same �gure.
INLAB REPORT

1. Hand in the histogram �gure.
2. How does the number of quantization levels seem to a�ect the shape of the distribution?
3. Explain why the error histograms you obtain might not be uniform?

Next we will examine correlation properties of the error signal. First compute and plot an estimate of
the autocorrelation function for each of the four error signals using the following commands:

[r,lags] = xcorr(E,200,'unbiased');

plot(lags,r)

Now compute and plot an estimate of the cross-correlation function between the quantized speech Y and
each error signal E using

[c,lags] = xcorr(E,Y,200,'unbiased');

plot(lags,c)

INLAB REPORT

1. Hand in the autocorrelation and cross-correlation estimates.
2. Is the autocorrelation in�uenced by the number of quantization levels? Do samples in the error signal

appear to be correlated with each other?
3. Does the number of quantization levels in�uence the cross-correlation?

3.4.2 Signal to Noise Ratio

One way to measure the quality of a quantized signal is by the Power Signal-to-Noise Ratio (PSNR). This
is de�ned by the ratio of the power in the quantized speech to power in the noise.

PSNR =
PY
PE

(4)

In this expression, the noise is the error signal E. Generally, this means that a higher PSNR implies a less
noisy signal.

From previous labs we know the power of a sampled signal, x (n), is de�ned by

Px =
1
L

L∑
n=1

x2 (n) (5)

where L is the length of x (n). Compute the PSNR for the four quantized speech signals from the previous
section.

http://cnx.org/content/m18085/1.3/



Connexions module: m18085 7

In evaluating quantization (or compression) algorithms, a graph called a �rate-distortion curve" is often
used. This curve plots signal distortion vs. bit rate. Here, we can measure the distortion by 1

PSNR ,
and determine the bit rate from the number of quantization levels and sampling rate. For example, if the
sampling rate is 8000 samples/sec, and we are using 7 bits/sample, the bit rate is 56 kilobits/sec (kbps).

Assuming that the speech is sampled at 8kHz, plot the rate distortion curve using 1
PSNR as the measure

of distortion. Generate this curve by computing the PSNR for 7, 6, 5,..., 1 bits/sample. Make sure the axes
of the graph are in terms of distortion and bit rate.

INLAB REPORT: Hand in a list of the 4 PSNR values, and the rate-distortion curve.

3.5 Max Quantizer

In this section, we will investigate a di�erent type of quantizer which produces less noise for a �xed number
of quantization levels. As an example, let's assume the input range for our signal is [-1,1], but most of the
input signal takes on values between [-0.2, 0.2]. If we place more of the quantization levels closer to zero, we
can lower the average error due to quantization.

A common measure of quantization error is mean squared error (noise power). The Max quantizer

is designed to minimize the mean squared error for a given set of training data. We will study how the
Max quantizer works, and compare its performance to that of the uniform quantizer which was used in the
previous sections.

3.5.1 Derivation

The Max quantizer determines quantization levels based on a data set's probability density function, f (x),
and the number of desired levels, N . It minimizes the mean squared error between the original and quantized
signals:

ε =
N∑
k=1

∫ xk+1

xk

(qk − x)2
f (x) dx (6)

where qk is the k
th quantization level, and xk is the lower boundary for qk. The error ε depends on both qk

and xk. (Note that for the Gaussian distribution, x1 = −∞, and xN+1 = ∞.) To minimize ε with respect
to qk, we must take

∂ε
∂qk

= 0 and solve for qk:

qk =

∫ xk+1

xk
xf (x) dx∫ xk+1

xk
f (x) dx

(7)

We still need the quantization boundaries, xk. Solving
∂ε
∂xk

= 0 yields:

xk =
qk−1 + qk

2
(8)

This means that each non-in�nite boundary is exactly halfway in between the two adjacent quantization
levels, and that each quantization level is at the centroid of its region. Figure 2 shows a �ve-level quantizer
for a Gaussian distributed signal. Note that the levels are closer together in areas of higher probability.

http://cnx.org/content/m18085/1.3/



Connexions module: m18085 8

Figure 2: Five level Max quantizer for Gaussian-distributed signal.

3.5.2 Implementation, Error Analysis and Comparison

Download the �le speech.au6 for the following section.
In this section we will use Matlab to compute an optimal quantizer, and compare its performance to

the uniform quantizer. Since we almost never know the actual probability density function of the data
that the quantizer will be applied to, we cannot use equation (7) to compute the optimal quantization levels.
Therefore, a numerical optimization procedure is used on a training set of data to compute the quantization
levels and boundaries which yield the smallest possible error for that set.

Matlab has a built-in function called lloyds which performs this optimization. It's syntax is...
[partition, codebook] = lloyds(training_set, initial_codebook) ;

This function requires two inputs. The �rst is the training data set, from which it will estimate the
probability density function. The second is a vector containing an initial guess of the optimal quantization
levels. It returns the computed optimal boundaries (the �partition�) and quantization levels (the �codebook�).

Since this algorithm minimizes the error with respect to the quantization levels, it is necessary to provide
a decent initial guess of the codebook to help ensure a valid result. If the initial codebook is signi�cantly
�far" away from the optimal solution, it's possible that the optimization will get trapped in a local minimum,
and the resultant codebook may perform quite poorly. In order to make a good guess, we may �rst estimate
the shape of the probability density function of the training set using a histogram. The idea is to divide the
histogram into equal �areas" and choose quantization levels as the centers of each of these segments.

First plot a 40-bin histogram of this speech signal using hist(speech,40), and make an initial guess of
the four optimal quantization levels. Print out the histogram. Then use the lloyds function to compute an
optimal 4-level codebook using speech.au7 as the training set.

Once the optimal codebook is obtained, use the codebook and partition vectors to quantize the speech
signal. This may be done with a for loop and if statements. Then compute the error signal and PSNR. On
the histogram plot, mark where the optimal quantization levels fall along the x-axis.
INLAB REPORT

1. Turn in the histogram plot with the codebook superimposed.
2. Compare the PSNR and sound quality of the uniform- and Max-quantized signals.

6See the �le at <http://cnx.org/content/m18085/latest/speech.au>
7See the �le at <http://cnx.org/content/m18085/latest/speech.au>

http://cnx.org/content/m18085/1.3/



Connexions module: m18085 9

3. If the speech signal was uniformly distributed, would the two quantizers be the same? Explain your
answer.

http://cnx.org/content/m18085/1.3/


