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Abstract

This module introduces the inverse matrix and its properties.

We have seen that the number 1 plays a special role in multiplication, because 1x = x.
The inverse of a number is de�ned as the number that multiplies by that number to give 1: b is the

inverse of a if ab = 1. Hence, the inverse of 3 is 1
3 ; the inverse of −5

8 =−8
5 . Every number except 0 has an

inverse.

By analogy, the inverse of a matrix multiplies by that matrix to give the identity matrix.

De�nition of Inverse Matrix
The inverse of matrix[A], designated as [A]−1

, is de�ned by the property: [A] [A]−1 = [A]−1 [A] = [I]
The superscript �1 is being used here in a similar way to its use in functions. Recall that f−−1 (x) does

not designate an exponent of any kind, but instead, an inverse function. In the same way, [A]−−1
does not

denote an exponent, but an inverse matrix.
Note that, just as in the de�nition of the identity matrix, this de�nition requires commutativity�the

multiplication must work the same in either order.

Note also that only square matrices can have an inverse. Why? The de�nition of an inverse matrix is

based on the identity matrix [I], and we already said that only square matrices even have an identity!

How do you �nd an inverse matrix? The method comes directly from the de�nition, with a little algebra. a b

c d

 as the inverse that we are looking for, by asserting that it �lls the de�nition of

an inverse matrix: when you multiply this mystery matrix by our original matrix, you get [I].
When we solve for the four variables a, b, c, and d, we will have found our inverse matrix. 3a + 4c 3b + 4d

5a + 6c 5b + 6d

 =

 1 0

0 1

 Do the multiplication. (You should check this step for

yourself, it's great practice. For instance, you start by multiplying �rst row x �rst column,
and you get 3a+4c.)

3a+4c = 1 3b+4d = 0 5a+6c = 0 5b+6d = 1 Remember what it means for two matrices
to be equal: every element in the left must equal its corresponding element on the right. So,
for these two matrices to equal each other, all four of these equations must hold.
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a = − − 3 b = 2 c = 2 1
2 d = − − 1 1

2 Solve the �rst two equations for a and c by using
either elimination or substitution. Solve the second two equations for b and d by using either
elimination or substitution. (The steps are not shown here.)

So the inverse is:

 −3 2

2 1
2 −1 1

2

 Having found the four variables, we have found the inverse. a b

c d

 as the inverse that we are looking for, by asserting that it �lls the de�nition

of an inverse matrix: when you multiply this mystery matrix by our original matrix, you get
[I]. When we solve for the four variables a, b, c, and d, we will have found our inverse matrix. 3a + 4c 3b + 4d

5a + 6c 5b + 6d

 =

 1 0

0 1

 Do the multiplication. (You should check this step for

yourself, it's great practice. For instance, you start by multiplying �rst row x �rst column,
and you get 3a+4c.)

3a+4c = 1 3b+4d = 0 5a+6c = 0 5b+6d = 1 Remember what it means for two matrices
to be equal: every element in the left must equal its corresponding element on the right. So,
for these two matrices to equal each other, all four of these equations must hold.

a = − − 3 b = 2 c = 2 1
2 d = − − 1 1

2 Solve the �rst two equations for a and c by using
either elimination or substitution. Solve the second two equations for b and d by using either
elimination or substitution. (The steps are not shown here.)

So the inverse is:

 −3 2

2 1
2 −1 1

2

 Having found the four variables, we have found the inverse. a b

c d

 as the inverse that we are looking for, by asserting that it �lls the de�nition of

an inverse matrix: when you multiply this mystery matrix by our original matrix, you get [I].
When we solve for the four variables a, b, c, and d, we will have found our inverse matrix. 3a + 4c 3b + 4d

5a + 6c 5b + 6d

 =

 1 0

0 1

 Do the multiplication. (You should check this step for

yourself, it's great practice. For instance, you start by multiplying �rst row x �rst column,
and you get 3a+4c.)

3a+4c = 1 3b+4d = 0 5a+6c = 0 5b+6d = 1 Remember what it means for two matrices
to be equal: every element in the left must equal its corresponding element on the right. So,
for these two matrices to equal each other, all four of these equations must hold.

a = − − 3 b = 2 c = 2 1
2 d = − − 1 1

2 Solve the �rst two equations for a and c by using
either elimination or substitution. Solve the second two equations for b and d by using either
elimination or substitution. (The steps are not shown here.)
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So the inverse is:

 −3 2

2 1
2 −1 1

2

 Having found the four variables, we have found the inverse.

Example: Finding an Inverse Matrix

Find the inverse of

 3 4

5 6

 The problem 3 4

5 6

 a b

c d

 =

 1 0

0 1

 This is the key step. It establishes

b

c d

 a b

c d

 as the in-

verse that we are looking for, by asserting that it �lls the de�nition of an inverse matrix:
when you multiply this mystery matrix by our original matrix, you get [I]. When we solve for
the four variables a, b, c, and d, we will have found our inverse matrix. 3a + 4c 3b + 4d

5a + 6c 5b + 6d

 =

 1 0

0 1

 Do the multiplication. (You should check this step for

yourself, it's great practice. For instance, you start by multiplying �rst row x �rst column,
and you get 3a+4c.)

3a+4c = 1 3b+4d = 0 5a+6c = 0 5b+6d = 1 Remember what it means for two matrices
to be equal: every element in the left must equal its corresponding element on the right. So,
for these two matrices to equal each other, all four of these equations must hold.

a = − − 3 b = 2 c = 2 1
2 d = − − 1 1

2 Solve the �rst two equations for a and c by using
either elimination or substitution. Solve the second two equations for b and d by using either
elimination or substitution. (The steps are not shown here.)

So the inverse is:

 −3 2

2 1
2 −1 1

2

 Having found the four variables, we have found the inverse.

Table 1

Did it work? Let's �nd out.

Testing our Inverse Matrix

continued on next page

http://cnx.org/content/m18294/1.2/



Connexions module: m18294 4

 −3 2

2 1
2 −1 1

2

  3 4

5 6

  1 0

0 1

 The de�nition of an inverse matrix: if we
have indeed found an inverse, then when we
multiply it by the original matrix, we should
get [I]. (−3) (3) + (2) (5) (−3) (4) + (2) (6)(

2 1
2

)
(3) +

(
−1 1

2

)
(5)

(
2 1

2

)
(4) +

(
−1 1

2

)
(6)


 1 0

0 1


Do the multiplication.

 −9 + 10 −12+ 12

7 1
2 − 7 1

2 10− 9

 =

 1 0

0 1

 It works!

Table 2

Note that, to fully test it, we would have to try the multiplication in both orders. Why?
Because, in general, changing the order of a matrix multiplication changes the answer; but
the de�nition of an inverse matrix speci�es that it must work both ways! Only one order was
shown above, so technically, we have only half-tested this inverse.

This process does not have to be memorized: it should make logical sense. Everything we
have learned about matrices should make logical sense, except for the very arbitrary-looking
de�nition of matrix multiplication.
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