
    
      [image: Hamming Block Code Channel Decoder]
    

  Hamming Block Code Channel Decoder
By: Ed Doering
Edited by: Brett Hern, Erik Luther, and Sam Shearman
Online:  <http://cnx.org/content/m18665/1.2/>
This module is copyrighted by Ed Doering.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/
Module revised: 2010/01/11


Hamming Block Code Channel Decoder
By: Ed Doering
Edited by: Brett Hern, Erik Luther, and Sam Shearman
Online:  <http://cnx.org/content/m18665/1.2/>
This module is copyrighted by Ed Doering.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/
Module revised: 2010/01/11


Hamming Block Code Channel Decoder

Summary
Channel encoding inserts additional information into a transmitted bit stream to facilitate error detection and error correction at the receiver. Block coding breaks up a bit stream into words of length k bits and appends check bits to form a codeword of length n bits. A corresponding channel decoder examines the complete codeword, and detects and even corrects certain types of erroneous bits caused by the channel.  In the prerequisite project "Hamming Block Code Channel Encoder" you developed a channel encoder using a special class of block code called a Hamming code. In this project, develop the companion channel decoder, and then evaluate the performance of the complete encoder/decoder system.




Table 1. 	
                   [image: LabVIEWtop.png]

               	 This module refers to LabVIEW, a software development environment that features a graphical programming language.
       Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
	• Apply LabVIEW to Audio Signal Processing 
	• Get started with LabVIEW
	• Obtain a fully-functional evaluation edition of LabVIEW


 Note

Visit LabVIEW Setup to learn how to adjust your own LabVIEW environment to match the settings used by the LabVIEW screencast video(s) in this module.
Click the "Fullscreen" button at the lower right corner of the video player if the video does not fit properly within your browser window.


1. Summary



 
		       Channel encoding inserts additional information into a transmitted bit stream to facilitate error detection and error correction at the receiver. Block coding breaks up a bit stream into words of length k bits and appends check bits to form a codeword of length n bits. A corresponding channel decoder examines the complete codeword, and detects and even corrects certain types of erroneous bits caused by the channel.
 		In the prerequisite project Hamming Block Code Channel Encoder you developed a channel encoder using a special class of block code called a Hamming code. In this project, develop the companion channel decoder, and then evaluate the performance of the complete encoder/decoder system.


2. Objectives



 	 Develop an (n,k) Hamming block code channel decoder capable of error detection and correction 

	 Examine the behavior of the encoded bitstream before and after passing through the decoder 

	 Evaluate the performance of the complete encoder/decoder system 




3. Deliverables



 	 Summary write-up of your results 

	 Hardcopy of all LabVIEW code that you develop (block diagrams and front panels) 

	 Any plots or diagrams requested 



 Note

		You can easily export LabVIEW front-panel waveform plots directly to your report. Right-click on the waveform
		indicator and choose "Export Simplified Image."



4. Setup



 	 LabVIEW 8.5 or later version 




5. Textbook Linkages



 
		Refer to the following textbooks for additional background on the project activities of this module;
		see the "References" section below for publication details:

 	 Carlson, Crilly, and Rutledge -- Ch 13 (basis for notation used in this module) 

	 Haykin -- Ch 10 

	 Lathi -- Ch 16 

	 Proakis and Salehi (FCS) -- Ch 13 

	 Proakis and Salehi (CSE) -- Ch 9 

	 Stern and Mahmoud -- Ch 10 




6. Prerequisite Modules



 		If you have not done so already, please complete the prerequisite module 
		Hamming Block Code Channel Encoder.
		
		If you are relatively new to LabVIEW, consider taking the course 
		LabVIEW Techniques for Audio Signal Processing 
		which provides the foundation you need to complete this project activity, including:
		block diagram editing techniques, essential programming structures, subVIs, arrays, and
		audio. 


7. Introduction



 
		       Error control coding describes a class of techniques that prepare
		a digital message bitstream to pass through a noisy channel so that the 
		receiver can detect and in some cases correct transmission errors. 
		The prerequisite project Hamming Block Code Channel Encoder describes
		how to create a specific type of channel encoder based on the 
		(n,k) Hamming code. The codeword length "n" and message length "k" are
		specific values calculated from the user-defined number of checkbits "q".
		As discussed in the prerequisite module, the code rate of the Hamming code
		approaches 1 (100% efficiency) as "q" increases, but the minimum Hamming distance
		"dmin" is fixed at 3. Therefore, the Hamming code can detect up to two bit errors
		in a received codeword, and can correct up to one bit error.
 		The channel decoder, a subsystem of the receiver, serves as a complement
		to the channel encoder in the transmitter. The channel decoder examines each received
		codeword, indicates detectable errors, fixes correctable errors, and extracts the
		message. Not all types of errors are detectable nor correctable, therefore the channel
		decoder can certainly emit garbled messages. Fortunately the channel noise must be rather
		severe before this becomes a problem.
 		The channel decoder developed in this project is called a table lookup syndrome decoder.
		View the Figure 1 screencast video to learn
		how to calculate the syndrome of a codeword, how to develop a lookup table 
		of most-likely error patterns indexed by syndrome value, and how to use these results as the
		basic components of a channel decoder capable of detecting and correcting some types of
		error patterns.

 Figure 1. 
 

   [video] Table lookup syndrome channel decoder for Hamming block code





8. Procedure



Manual calculations



 
		Work through the syndrome calculation process by hand to lay a good
		foundation for developing a correct and understandable computer 
		implementation. Write up this work on a separate page.
 		The end of the Figure 1 screencast video
		presents an example of a specific Hamming code generator matrix "G", a specific message vector "M" and 
		associated codeword vector "X", and three received versions of the same transmitted codeword with
		varying severity of bit errors.

 	 Determine the parity check matrix "HT" (the transpose of the matrix "H") that corresponds
			to the generator matrix "G". 

	 Write the three received codeword vectors. 

	 Calculate the syndrome for each of the three received codewords. Remember to use modulo-2
		arithmetic for the matrix calculations. 

	 Discuss your results in terms of the potential to detect and correct errors for
		each of the three received codewords based on their calculated syndromes. 




SubVI construction



 
		Build the subVIs listed below. You may already have some of these available
		from previous projects.
 		Demonstrate that each of these subVIs works properly before continuing to the next part.

 	 
                  hamming_ParityCheckMatrix.vi  
               

	 
                  hamming_SyndromeTable.vi  
               

	 
                  hamming_DetectorCorrector.vi  
               

	 
                  util_BitstreamFromText.vi  
               

	 
                  util_BitstreamToText.vi  
               




Hamming block code channel decoder



 
		Use your top-level application VI from the prerequisite channel encoder project as a starting point for
		this project.
 		Review again the background theory presented earlier for the Hamming block code channel decoder, then
		extend the top-level application VI to decode the output of the channel. Follow the block diagram 
		described near the end of the Figure 1 screencast video.
 		Display Boolean array front-panel indicators for the following values:

 	 message -- original message words 

	 encoded message -- message words with appended checkbits (transmitted codewords) 

	 received message -- received codewords after passing through noisy channel 

	 pre-decoding errors -- bit error locations in received codewords 

	 corrected message -- received codewords with error correction applied 

	 post-decoding errors -- bit error locations in corrected codewords 

	 error detected (1-D array) -- error detected (non-zero syndrome) 




Combined channel encoder/decoder performance



 	 
			Generate 50 words, and begin with 3 checkbits. Run the VI repeatedly and observe the channel decoder
			output indicators. What bit error rate tends to limit the received codeword errors to single-bit errors?
	 

	 
			Increase to 4 checkbits, then to 5 checkbits, and so on while holding the bit error rate fixed.
       			Recalling the positive effect of increasing the number of checkbits (increased code rate), what appears to
			be the negative effect of an increased number of checkbits? Explain.
	 

	 
			Return to 3 checkbits. Run the VI until you observe a two-bit error in a received codeword. Does
			the "error detected" indicator work properly? How about the corrected codeword? Explain these results.
	 

	 
			Set the number of checkbits to 2 and run the VI several times. What is another name (hopefully familiar to you) for this code?
	 




Text messaging



 
		Replace the random number generator in the transmit section with the text data source 
		util_BitstreamFromText.vi. Use the companion
		subVI util_BitstreamToText.vi to display the receiver output. 
		Experiment with short messages and long messages, making sure that
		the intermediate Boolean displays make sense.
 		Experiment with intelligibility in the received message as a function of bit error rate (BER). Determine specific BER values you
		associate with the following qualitative labels: excellent, good, barely acceptable, and unintelligible.



9. References



 	 
		Carlson, A. Bruce, Paul B. Crilly, and Janet C. Rutledge, "Communication Systems," 4th ed., McGraw-Hill, 2002. ISBN-13: 978-0-07-011127-1
	 

	 
		Haykin, Simon. "Communication Systems," 4th ed., Wiley, 2001. ISBN-10: 0-471-17869-1
	 

	 
		Lathi, Bhagwandas P., "Modern Digital and Analog Communication Systems," 3rd ed., Oxford University Press, 1998. ISBN-10: 0-19-511009-9
	 

	 
		Proakis, John G., and Masoud Salehi, "Fundamentals of Communication Systems," Pearson Prentice Hall, 2005. ISBN-10: 0-13-147135-X
	 

	 
		Proakis, John G., and Masoud Salehi, "Communication Systems Engineering," 2nd ed., Pearson Prentice Hall, 2002. ISBN-10: 0-13-061793-8
	 

	 
		Stern, Harold P.E., and Samy A. Mahmoud, "Communication Systems," Pearson Prentice Hall, 2004. ISBN-10: 0-13-040268-0
	 





content/cover.png
Hamming Block
Code Channel
Decoder






content/LabVIEWtop.png





