
OpenStax-CNX module: m18920 1

Integrated Development

Environment
∗

Kenneth Leroy Busbee

This work is produced by OpenStax-CNX and licensed under the

Creative Commons Attribution License 2.0†

Abstract

An explanation of how an IDE processes a source code �le into a program that runs on the computer.
Categories of errors are discussed and demonstrated with C++ source code �les that can be downloaded
for practice.

1 IDE Overview

High-level language programs are usually written (coded) as ASCII text into a source code �le. A unique �le
extension (Examples: .asm .cob .for .pas .c .cpp) is used to identify it as a source code �le. As you can guess
for our examples � Assembly, COBOL, FORTRAN, Pascal, "C" and "C++" however, they are just ASCII
text �les (other text �les usually use the extension of .txt). The source code produced by the programmer
must be converted to an executable machine code �le speci�cally for the computer's CPU (usually an Intel
or Intel compatible CPU within today's world of micro computers). There are several steps in getting a
program from its source code stage to running the program on your computer. Historically, we had to use
several software programs (a text editor, a compiler, a linker and operating system commands) to make the
conversion and run our program. However, today all those software programs with their associated tasks
have been integrated into one program usually called a compiler. However, this one compiler program is
really many software items that create an environment used by programmers to develop software. Thus
the name: Integrated Development Environment or IDE.

The following �gure shows the progression of activity in an IDE as a programmer enters the source code
and then directs the IDE to compile and run the program.

∗Version 1.9: Jan 15, 2010 6:54 am -0600
†http://creativecommons.org/licenses/by/2.0/

http://cnx.org/content/m18920/1.9/



OpenStax-CNX module: m18920 2

Figure 1: Integrated Development Environment or IDE

Upon starting the IDE software the programmer usually indicates he wants to open a �le for editing as
source code. As they make changes they might either do a "save as" or "save". When they have �nished
entering the source code, they usually direct the IDE to "compile & run" the program. The IDE does the
following steps:

1. If there are any unsaved changes to the source code �le it has the test editor save the changes.
2. The compiler opens the source code �le and does its �rst step which is executing the pre-processor

compiler directives and other steps needed to get the �le ready for the second step. The #include will
insert header �les into the code at this point. If it encounters an error, it stops the process and returns
the user to the source code �le within the text editor with an error message. If no problems encountered
it saves the source code to a temporary �le called a translation unit.

3. The compiler opens the translation unit �le and does its second step which is converting the
programming language code to machine instructions for the CPU, a data area and a list of items to
be resolved by the linker. Any problems encounted (usually a syntax or violation of the programming
language rules) stops the process and returns the user to the source code �le within the text editor
with an error message. If no problems encountered it saves the machine instructions, data area and
linker resolution list as an object �le.

http://cnx.org/content/m18920/1.9/



OpenStax-CNX module: m18920 3

4. The linker opens the program object �le and links it with the library object �les as needed. Unless all
linker items are resolved, the process stops and returns the user to the source code �le within the text
editor with an error message. If no problems encountered it saves the linked objects as an executable
�le.

5. The IDE directs the operating system's program called the loader to load the executable �le into the
computer's memory and have the Central Processing Unit (CPU) start processing the instructions. As
the user interacts with the program, entering his test data, he might discover that the outputs are not
correct. These types of errors are called logic errors and would require him to return to the source
code to change the algorithm.

2 Resolving Errors

Despite our best e�orts at becoming perfect programmers, we will create errors. Solving these errors is
known as debugging your program. The three types of errors in the order that they occur are:

1. Compiler
2. Linker
3. Logic

There are two types of compiler errors; pre-processor (1st step) and conversion (2nd step). A review of
Figure 1 above shows the four arrows returning to the source code so that the programmer can correct the
mistake.

During the conversion (2nd step) the complier might give a warning message which in some cases may
not be a problem to worry about. For example: Data type demotion may be exactly what you want your
program to do, but most compilers give a warning message. Warnings don't stop the compiling process but
as their name implies, they should be reviewed.

The next three �gures show IDE monitor interaction for the Bloodshed Dev-C++ 5 compiler/IDE.

http://cnx.org/content/m18920/1.9/



OpenStax-CNX module: m18920 4

Figure 2: Compiler Error (the red line is where the complier stopped)

http://cnx.org/content/m18920/1.9/



OpenStax-CNX module: m18920 5

Figure 3: Linker Error (no red line with an error message describing linking problem)

http://cnx.org/content/m18920/1.9/



OpenStax-CNX module: m18920 6

Figure 4: Logic Error (from the output within the "Black Box" area)

3 Demonstration Program in C++

3.1 Creating a Folder or Sub-Folder for Source Code Files

Depending on your compiler/IDE, you should decide where to download and store source code �les for
processing. Prudence dictates that you create these folders as needed prior to downloading source code �les.
A suggested sub-folder for the Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as appropriate.

3.2 Download the Demo Program

Download and store the following �le(s) to your storage device in the appropriate folder(s). Following the
methods of your compiler/IDE, compile and run the program(s). Study the soruce code �le(s) in conjunction
with other learning materials.

Download from Connexions: Demo_Pre_Processor_Compiler_Errors.cpp1

Download from Connexions: Demo Compiler_Conversion_Errors.cpp2

1See the �le at <http://cnx.org/content/m18920/latest/Demo_Pre_Processor_Compiler_Errors.cpp>
2See the �le at <http://cnx.org/content/m18920/latest/Demo_Compiler_Conversion_Errors.cpp>

http://cnx.org/content/m18920/1.9/



OpenStax-CNX module: m18920 7

Download from Connexions: Demo_Linker_Errors.cpp3

Download from Connexions: Demo_Logic_Errors.cpp4

4 De�nitions

De�nition 1: text editor
A software program for creating and editing ASCII text �les.

De�nition 2: compiler
Converts source code to object code.

De�nition 3: pre-processor
The �rst step the complier does in converting source code to object code.

De�nition 4: linker
Connects or links object �les into an executable �le.

De�nition 5: loader
Part of the operating system that loads executable �les into memory and direct the CPU to start
running the program.

De�nition 6: debugging
The process of removing errors from a program. 1) compiler 2) linker 3) logic

De�nition 7: warning
A compiler alert that there might be a problem.

3See the �le at <http://cnx.org/content/m18920/latest/Demo_Linker_Errors.cpp>
4See the �le at <http://cnx.org/content/m18920/latest/Demo_Logic_Errors.cpp>

http://cnx.org/content/m18920/1.9/


