With luck, you have two or three weeks left for review after this, before the final test. Congratulations, you made it through!

Inside Collection: Advanced Algebra II: Teacher's Guide

Summary: A teacher's guide to lectures on hyperbolas.

The good news about hyperbolas is, they are a lot like ellipses—a lot of what has already been learned, will come in handy here. The bad news about hyperbolas is, they are a lot like ellipses—so all the little differences can be very confusing.

We will start as always with the geometric definition. Let them do the assignment “Distance to this point *minus* distance to that point is constant” in groups, and help them out until they get the shape themselves. There are two pretty easy points to find on the

The lecture starts by pointing out what we have. We have two points, once again called the *foci.* They are the defining points of the hyperbola, but they are not part of the hyperbola. And we also once again have a distance which is part of the definition.

Because the foci were horizontally across from each other, we have a horizontal hyperbola. If they were vertically lined up, we would have a vertical hyperbola. You can also do diagonal hyperbolas—anyone remember where we have seen one of those? That’s right, inverse variation! That was a hyperbola, just like these. But we’re not going to talk about those in this unit, just the horizontal and vertical ones.

Incidentally, a hyperbola is *not* two back-to-back parabolas. It looks like it, but these shapes are actually different from parabolic shapes, as we will see.

OK, so, what good are hyperbolas? The analogy continues…orbits! Suppose a comet is heading toward the sun. (Draw.) If it has a low energy—that is, a low velocity—it gets trapped by the sun, and wins up orbiting around the sun in an elliptical orbit. But if it has high energy (high velocity) it zooms around the sun and then zooms away forever. Its path in this case is half a hyperbola.

Another cool use is in submarine detection. A submarine sends out a pulse. Two receiving stations get the pulse. They don’t know what direction it came from or when it was sent, but they do know that one station received it exactly two seconds before the other one. This enables them to say that the distance from the sub to this station, *minus* the distance to this other station, is such-and-such. And this, in turn, locates the sub on a hyperbola.

OK, on to the machinery. Here is the equation for a horizontal hyperbola, centered at the origin.

Looks familiar, doesn’t it? But the plus has changed to a minus, and that makes all the difference in the world.

Here is a drawing of a horizontal hyperbola.

Let’s be very careful in seeing how this *is,* and *is not,* like an ellipse.

a is defined in a very similar way. It goes from the center, to the edges. In this case, the edges are called the “vertices” (in analogy to parabolas). The distance from one vertex to the other (*transverse axis.*

*conjugate axis.*

But here is one major difference. In an ellipse, the foci are *inside;* in a hyperbola, they are *outside.* So you can see, just looking at an ellipse, that

Once again, the class should be able to see that if the center is (

How about a vertical hyperbola? That looks like this:

The way we tell vertical from horizontal is *completely different.* In an ellipse, we told by assuming that *first.* If we are doing an
*This is a very common source of errors…be careful!*

There should be no need to go through the whole completing-the-square rigmarole on the board—just tell them it is exactly like with ellipses, including making sure you have a 1 on the right, and there is nothing multiplied by

First of all, what is the center? That’s easy: (2,-3).

Now, here is a harder question: does it open vertically, or horizontally? We can answer this question without even looking at the numbers on the bottom! The

As we did with ellipses, we will then find

Now, it’s drawing time. We start at the center. We go out horizontally by 6 to find the vertices, and by a little more than 6 to find the foci. We go out vertically by 2 to find the endpoints of the conjugate axis, those weird little points in space. Then what?

Here’s what you do. Draw a rectangle, going through the vertices, and the endpoints of the conjugate axis. Then, draw diagonal lines through the corners of that rectangle. Those diagonal lines are going to serve as *asymptotes,* or guides: they are not part of the hyperbola, but they help us draw it. Why? Because as it moves out, the hyperbola gets closer and closer to the asymptotes, but never quite reaches them. So once you have drawn your asymptotes, you have a guide for drawing in your hyperbola.

Note that I draw the box and the asymptotes in dotted lines, indicating that they are not really part of the hyperbola.

It’s worth talking for a while about what an asymptote is, since it is such an important concept in Calculus—the line that the curve gets closer and closer and closer to, without ever quite reaching. It’s also worth pointing out that this shows that a hyperbola is not two back-to-back parabolas, since parabolas do not display asymptotic behavior.

Finally, I always mention the comet again. Remember that if a comet comes in with high energy, it swoops around the sun and then flies away again. Now, if there were no sun—if there were nothing in the universe but our comet—the comet would travel in a straight line. And clearly, when the comet is very, very far away from the sun (either *before* or *after* its journey through our solar system), the effect of the sun is very small, so the comet travels almost in a straight line. That straight line is the asymptote. The farther away from the sun the comet gets, the closer it gets to that straight line.

“Homework: Hyperbolas”

The only really unusual thing here is that I ask for the equation of one of the asymptotes. This is just a quick review of the skill of finding the equation for a line, given that you already know two points on the line.

You will note that I have absolutely nothing here about going from the geometry of the hyperbola, to the equation. The reason is that it is exactly like the ellipse. You may want to do it, or you may not. If you do it, you shouldn’t need to hand them anything—just say “By analogy to what we did with the ellipse, do this.”

Now that you have done all the shapes, the one vital skill that cuts across all of it is looking at an equation (

With luck, you have two or three weeks left for review after this, before the final test. Congratulations, you made it through!

- « Previous module in collection Ellipses: From Definition to Equation
- Collection home: Advanced Algebra II: Teacher's Guide
- Next module in collection » Prerequisites

Comments:"This is the "teacher's guide" book in Kenny Felder's "Advanced Algebra II" series. This text was created with a focus on 'doing' and 'understanding' algebra concepts rather than simply hearing […]"