Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » Advanced Algebra II: Teacher's Guide » Introduction

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Featured Content display tagshide tags

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "This is the "teacher's guide" book in Kenny Felder's "Advanced Algebra II" series. This text was created with a focus on 'doing' and 'understanding' algebra concepts rather than simply hearing […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Busbee's Math Materials display tagshide tags

    This collection is included inLens: Busbee's Math Materials Lens
    By: Kenneth Leroy Busbee

    Click the "Busbee's Math Materials" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Introduction

Module by: Kenny M. Felder. E-mail the author

Summary: Some basics on imaginary numbers.

This is an interesting unit in several ways, both good and bad.

The good news is, it’s fun. It’s like a game, and I always try to present it that way.

The bad news is, it’s incredibly abstract. It’s abstract because it’s hard to understand these numbers-that-aren’t-numbers, and it’s also abstract because, to save my life, I can’t come up with any good explanation of why imaginary numbers are useful. Of course, they are useful—invaluable even—but how can I explain that to an Algebra II student? Here are a few things I do always say (several times).

  1. These numbers are indeed useful, and they are used in the real world, even if I can’t do a great job of explaining why to you right now.
  2. Nothing in the real world is imaginary. That is, you will never have i tomatoes, or measure a brick that is 5 i 5i feet long, or wait for 3 i + 2 3i+2 seconds. So why are these useful? Because there are very often problems where the problem is real, and the answer is real, but in between, as you get from the problem to the answer, you have to use imaginary numbers. Repeat this several times. You have a problem, or real-world situation, which (of course) involves all real numbers. You do a bunch of math, which includes imaginary numbers. In the end, you wind up with the answer, which (of course) involves all real numbers again. But it would have been difficult or impossible to find that answer, if you didn’t have imaginary numbers.
  3. One example is electrical engineering. In an electric circuit you have resistors, capacitors, and inductors. They all act very differently in the circuit. When you model the circuit mathematically, to determine how it will behave (what current will flow through it), the inductor has an inductance and the capacitor has a capacitance and the resistor has a resistance and they are all very different, which makes the math really hairy. However, you can define a complex quantity called impedance which makes resistors, capacitors, and inductors all look mathematically the same. The disadvantage is that you are now working with a complex number instead of all real numbers. The advantage is that resistors, capacitors, and inductors now look the same in the equations, which makes life a whole lot simpler. So this is a good example of how you use complex numbers to make the math easier. (As a side note, electrical engineers call the imaginary number j j whereas everyone else on the planet calls it i i. I think kids like that bit of trivia.)
  4. Imaginary numbers are also used in many other applications, such as quantum mechanics.

It’s all very hand-wavy, and I admit that up front, and I don’t hold the kids responsible for it. But I want them to know that this is really useful, and at the same time, I want to explain why we aren’t going to have any “real world” problems in this unit.

This lecture, by the way, usually comes toward the end of day 1, or during day 2—not at the very beginning of day 1. In the beginning, I prefer to treat it as a game—“What if there were a square root of –1? Just suppose, what if there were?” With one class I went so far in treating it as a game that it was day 3 before they realized I wasn’t making the whole thing up.

Oh yeah, one more thing. The calculators will do imaginary numbers for them. I never tell them this. If they figure it out, more power to them. But I literally don’t tell them until after the test that the calculator knows anything at all about imaginary numbers! I want them to be able to do these things on their own.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks